We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Microfluidic Cassette Analyses Genes and Proteins

By LabMedica International staff writers
Posted on 14 Sep 2010
A device that quickly identifies genes and proteins in body fluids has been developed that could make a vital difference to the trauma patients doctors treat. More...


A new method to isolate cells from patient samples is under development and analyzing them will help predict outcomes after severe trauma The technology, called a microfluidic cassette, allows precise analysis of very small volumes of fluids and can be used to study patients' genes and proteins.

Knowing the genomic signature of a cell population can help doctors diagnose diseases and may allow them to predict how individual patients will respond to trauma and what treatments to order. The approach also could be used with patients who have cancer or other conditions. Scientists at the University of Florida, (UF; Gainesville, FL, USA), developed and tested the cassette to isolate neutrophils, the first type of white blood cell on the scene of an infection, and to analyze the proteins they produce. A sample of fluid, such as blood or urine, is pumped through the device, which is laced with antibodies that capture the individual cells.

Testing showed the device yielded pure samples of neutrophils, and their gene expression pattern was consistent with results from tests performed in previous studies. The team was able to identify 63 genes that are differentially expressed. The genes in question regulate functions of the immune system. Patients, whose expression of these genes is abnormal, are less likely to return to their normal immune function within days of trauma, as most patients do. This leaves them more vulnerable to infections and a myriad of related complications.

Lyle L. Moldawer, Ph.D., a professor at UF said, "What is so powerful about this technique is that you can isolate any cell population quickly and efficiently at the bedside. In this case we isolated blood neutrophils, but we' have also isolated T cells, mixed leukocytes, monocytes. Theoretically, you can isolate any cell population, under any disease, and rapidly get nucleic acids to produce a genomic signature."

Kenneth Kotz, Ph.D., a research fellow at Massachusetts General Hospital (Boston, MA, USA) added, "We are getting 100 ng of ribonucleic acid (RNA) from 0.15 mL of blood and we're doing it all in 30 minutes. No one has really ever been able to do this for neutrophils. No one has been able to demonstrate the speed and the sample quality with these small blood volumes." The results of the study were published September 2010 in Nature Medicine.

Related Links:
University of Florida
Massachusetts General Hospital



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.