Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





Antibody-Based Method Detects SARS-CoV-2 Without Blood Sample

By LabMedica International staff writers
Posted on 04 Jul 2022

Despite significant and stunning advances in vaccine technology, the COVID-19 global pandemic is not over. More...

A key challenge in limiting the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is identifying infected individuals. The ineffective identification of SARS-CoV-2-infected individuals has severely limited the global response to the COVID-19 pandemic, and the high rate of asymptomatic infections (16-38%) has exacerbated this situation. The predominant detection method to date collects samples by swabbing the nose and throat. However, the application of this method is limited by its long detection time (4-6 hours), high cost, and requirement for specialized equipment and medical personnel, particularly in resource-limited countries. Now, investigators have developed a new antibody-based method for the rapid and reliable detection of SARS-CoV-2 that does not require a blood sample.

An alternative and complementary method for the confirmation of COVID-19 infection involves the detection of SARS-CoV-2-specific antibodies. Testing strips based on gold nanoparticles are currently in widespread use for point-of-care testing in many countries. They produce sensitive and reliable results within 10-20 minutes, but they require blood samples collected via a finger prick using a lancing device. This is painful and increases the risk of infection or cross-contamination, and the used kit components present a potential biohazard risk. In order to avoid these drawbacks, researchers at the Institute of Industrial Science at the University of Tokyo (Tokyo, Japan) explored the idea of sampling and testing the interstitial fluid (ISF), which is located in the epidermis and dermis layers of human skin.

"To develop a minimally invasive detection assay that would avoid these drawbacks, we explored the idea of sampling and testing the interstitial fluid (ISF), which is located in the epidermis and dermis layers of human skin," explained Leilei Bao, lead author of the study. "Although the antibody levels in the ISF are approximately 15-25% of those in blood, it was still feasible that anti-SARS-CoV-2 IgM/IgG antibodies could be detected and that ISF could act as a direct substitute for blood sampling."

After demonstrating that ISF could be suitable for antibody detection, the researchers developed an innovative approach to both sample and test the ISF. "First, we developed biodegradable porous microneedles made of polylactic acid that draws up the ISF from human skin," said Beomjoon Kim, senior author of the study. "Then, we constructed a paper-based immunoassay biosensor for the detection of SARS-CoV-2-specific antibodies." By integrating these two elements, the researchers created a compact patch capable of on-site detection of the antibodies within three minutes (result from in vitro tests).

The novel detection device has great potential for the rapid screening of COVID-19 and many other infectious diseases that is safe and acceptable to patients. It holds promise for use in many countries regardless of their wealth, which is a key aim for the global management of infectious disease.

Related Links:
Institute of Industrial Science 


Platinum Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
SARS-COV-2 PLUS UK Real Time PCR kit
SARS-COV-2 PLUS UK REALTIME PCR KIT
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.