We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App





COVID-19 Antibody Measurement Technology Assesses Virus Blocking Efficacy

By LabMedica International staff writers
Posted on 22 Apr 2022

Researchers have been investigating whether a person’s antibodies work to block the COVID-19 virus from infecting one’s system and if these antibodies are also capable of blocking emerging variants such as Omicron. More...

Now, a team of researchers have developed a non-replicating rapid SARS-CoV-2 pseudovirus system that can quickly and quantitatively measure the ability of one’s antibodies to block SARS-CoV-2 and its variants in vitro.

A cross-disciplinary team coordinated by scientists from the Center for Infectious Disease Research (CIDR) at George Mason University (Fairfax, VA, USA) has developed Ha-CoV-2, a hybrid alphavirus-SARS-CoV-2 pseudovirus system that can robustly express reporter genes in cells within hours to rapidly measure neutralizing antibodies. Ha-CoV-2 pseudovirus was utilized against the COVID-19 virus and its variants including Alpha, Delta, and Omicron, as well as the currently emerging omicron BA.2 variant. This cutting-edge technology reduces a typical two-day process down to a few hours.

The science underpinning the discovery reviews the concentration of antibodies in one’s blood at various levels of dilution to determine the minimal level required to block the virus particle getting into the cell. The Ha-CoV-2 system can tell a person his/her/their antibodies’ strength to neutralize SARS-CoV-2 or a particular variant. Some have stronger antibodies due to prior infection, and whether a person received one or more vaccine. Vaccination and repeated exposure can trigger stronger antibody response. The technology has a multitude of virus monitoring applications in the public and private sector. The researchers are now applying the technology to measure neutralizing antibodies from immune-compromised people after their vaccination, in hope to gain detailed information so that educated decisions can be made regarding the need for booster shots.

“Most of the future baselines will start with protection (including when to get boosters), detection, and treatment against Omicrons. This rapid pseudovirus technology could identify antibody levels and their efficacy to determine if one should need additional protection and could become part of an organization’s or person’s structured antibody assessment process,” said Dr. Yuntao Wu, a professor and virologist in Mason’s College of Science and team’s primary investigator.

Related Links:
George Mason University 


Platinum Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.