Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





Low-Cost Multiplexed Electrochemical Biomarker Detection Platform to Be Commercialized in POC Diagnostics

By LabMedica International staff writers
Posted on 09 Mar 2022

A low-cost multiplexed electrochemical biomarker detection platform will be commercialized in point-of-care diagnostics to be put into the hands of patients and primary health practitioners. More...

Harvard Wyss Institute (Boston, MA, USA) and The iQ Group Global Ltd. (Sydney, NSW, Australia) have licensed the Institute’s electrochemical eRapid technology to Antisoma Therapeutics Pty. Ltd., a subsidiary of The iQ Group Global. The licensing agreement grants Antisoma exclusive, worldwide access to the Wyss Institute’s sensor technology in the fields of respiratory viral disease, including COVID-19 and the flu, allergic responses and anaphylaxis, and cancer. The agreement enables the company to concertedly develop much-needed point-of-care diagnostics that could put results in the hands of patients and primary health practitioners in real time.

Since 2020, the Wyss Institute has collaborated with The iQ Group Global in an effort to expedite the development of a fast, multiplexed, low-cost COVID-19 biomarker analysis for point-of-care applications. Exchanging sensor prototypes, specific know-how, and product development expertise, the Wyss Institute and The iQ Group Global worked jointly toward combining eRapid technology developed for SARS-CoV-2 detection with The Group’s transistor technology, which is based on Organic Thin Film Transistor Technology (OTFT), and the combination of the two technologies was able to significantly enhance the electrical signals.

eRapid as a low-cost, affinity-based electrochemical sensing platform that can simultaneously detect and quantify a broad range of biomarkers with high sensitivity and selectivity in a small volume of blood and other complex biological fluids. The technology uses a novel, low-cost, antifouling nanocomposite coating to which ligands for a broad range of biomarkers, including RNAs, proteins, host antibodies, and metabolites can be attached. Upon chemically detecting a target biomarker, the eRapid platform generates an electrical signal within minutes that correlates in strength with the levels of the bound biomarker.

Through an extensive de-risking process, the Wyss team significantly enhanced the applicability and cost-effectiveness of eRapid technology by building multiplexing capabilities into it, which enables each eRapid sensor chip to simultaneously detect multiple biomarkers and produce independent electrical signals for each of them. They replaced the original surface chemistry with a graphene-based chemistry that further enhances biomarker detection, and by streamlining the fabrication of eRapid sensors with a “dip coating method,” reduced the time needed for coating the sensor surface with the graphene chemistry from 24 hours down to less than a minute. This last engineering feat also dramatically decreased the fabrication costs for eRapid sensors and made them storable with minimal loss of electrical signal, which will greatly facilitate their commercialization and increase their usefulness in future point-of-care diagnostic assays, as tests taken remotely can also be sent to central laboratories for their analysis.

“This license marks an important moment in moving eRapid technology out into the world where it could improve the lives of patients suffering from infectious, immune, or cancer diseases, whose rapid diagnosis requires the detection of multiple biomarkers,” said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D.

“Through different stages of the development and validation process, we have created eRapid-based biomarker panels as precision instruments for several disorders with a strong focus also on COVID-19 detection,” said Wyss senior staff scientist Pawan Jolly, Ph.D. “We are confident that in the hands of Antisoma Therapeutics, our technology will be used to close important diagnostic gaps.”

“This is a great time that we live in as we become part of the convergence of multiple technologies such as biosensors, 5G connectivity and nano technology. We are on the verge of making personalized medicine not only a reality, but accessible and affordable to everyone,” added Dr. George Syrmalis, CEO and Chairman of The iQ Group Global. “Our priority is to continue developing and commercializing the saliva quantitative COVID test, standardized against the World Health Organization (WHO) reference preparation, which will allow patients and physicians to determine immunity based on antibody load, and thus determine if and when additional vaccination shots are needed. This level of accuracy will rationalize repeat vaccination protocols, increase the efficiency of health care services while dramatically reducing costs to governments and the health care sector.”

Related Links:
Harvard Wyss Institute 
The iQ Group Global Ltd. 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
COVID-19 TEST READER
COVID-19-CHECK-1 EASY READER+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.