Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





New Saliva-Based COVID-19 Antigen Rapid Test Delivers Results in Minutes with Nearly Comparable Sensitivity to PCR Test

By LabMedica International staff writers
Posted on 09 Dec 2021

A new saliva-based COVID-19 Antigen Rapid Test (ART) technology has shown promise in early clinical testing, outperforming existing ARTs and delivering results in minutes, with nearly comparable sensitivity to the gold standard Polymerase Chain Reaction (PCR) test. More...

The potentially game-changing ART technology to diagnose COVID-19 has been developed by scientists at the SingHealth Duke-NUS Academic Medical Centre (Singapore) and the National University of Singapore (Singapore). Using a proprietary on-kit amplification technique, a person’s saliva can be self-administered or tested for the SARS-CoV-2 virus at the point-of-care with sensitivity higher than current ART tests and close to that of laboratory-based PCR tests. Dubbed the Parallel Amplified Saliva rapid POint-of-caRe Test (PASPORT), the technology produces results in minutes, without the need for additional equipment or specially-trained personnel.

Unlike tests that use nasal or throat swabs, saliva-based tests are convenient and are more easily self-administered. But, until now, saliva tests for detecting SARS-CoV-2 have not been considered reliable enough to roll out at large scale. This is because the concentration of viral particles in saliva drops steeply after an individual eats or drinks. As a result, saliva antigen tests are usually only reliable when they are performed first thing in the morning, after an overnight fast and before breakfast or brushing teeth. This makes testing of saliva samples at other times of the day less reliable.

The researchers remedied this by using a two-stage process. Like other ARTs, PASPORT uses nanoparticles to bind the virus. But uniquely, it also adds a second type of nanoparticle that binds the first set of nanoparticles to amplify the signal. This makes testing using PASPORT more sensitive at finding and flagging the virus, and allows it to be used at any time of the day—its sensitivity is not compromised even after eating or drinking. Compared to other amplification techniques, PASPORT is able achieve detection even at much lower viral loads, enabling it to be extremely sensitive. In a clinical study involving over 100 participants, PASPORT’s sensitivity in detecting the virus was 97% and its specificity was 90.6%, as compared to the gold standard PCR test.

With the impending availability of oral antiviral drugs against SARS-CoV-2, COVID-19 could potentially be diagnosed and treated in the primary care setting in the future. A test that can be done on-site will enable doctors to diagnose COVID-19 accurately and prescribe the drugs appropriately. Moreover, with its anticipated low cost and ease of use as compared to PCR tests, PASPORT could aid countries around the world in making early diagnosis of COVID-19 to initiate appropriate case management.

“Testing is an indispensable tool in the management of COVID-19 cases. Although PCR has been the gold standard, it requires trained personnel and laboratory infrastructure,” said lead inventor Dr. Danny Jian Hang Tng, Medical Officer at the Department of Infectious Diseases, SGH, and an adjunct Research Fellow at Duke-NUS’ Emerging Infectious Diseases (EID) Program. “A reliable and painless saliva antigen test that is affordable and convenient to perform would encourage more to be tested, and more frequent testing. This may enable us to manage COVID-19 more effectively not only at the point of care, but also in settings such as airports, conventions and even at home.”

“Our invention ticks all the boxes for an ideal rapid test: ease of collection of saliva; highly accurate with very low false negative results, making it an invaluable screening tool; and can be done at any time of the day, making it possible to be used at point of care, with reliable authentication,” said Professor Soo Khee Chee, Benjamin Sheares Professor in Academic Medicine at the SingHealth Duke-NUS Oncology Academic Clinical Program, a Senior Advisor to Duke-NUS, and a senior co-inventor.

Related Links:
SingHealth Duke-NUS Academic Medical Centre 
National University of Singapore 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Nucleic Acid Isolation Kit
MagMAX™ Viral/Pathogen Ultra Nucleic Acid Isolation Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.