We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App





New Platform That Quickly Identifies Common SARS-CoV-2 Mutations Could Pave Way for Tailored Antibody Treatments

By LabMedica International staff writers
Posted on 17 Aug 2021
Researchers have developed a platform which can quickly identify common SARS-CoV-2 mutations that allow it to escape antibodies and infect cells, marking a major step towards developing a universal COVID-19 vaccine and tailored antibody treatments.

The research team at the University of Colorado Boulder (Boulder, CO, USA) developed a genetically modified version of baker’s yeast to express some of SARS-CoV-2’s viral spike proteins along the yeast’s surface, with which they can map resulting mutations that form and escape neutralizing antibodies. More...
The resulting roadmap could inform the development of more effective booster vaccines and tailored antibody treatments for patients with severe cases of COVID-19, according to the researchers.

Spike proteins are sharp bumps that stick out from the surface of viruses in the coronavirus family. Under a microscope, they can appear like a crown, which is where coronaviruses - corona being Latin for “crown” - their name, and how they bind to cells like a key in a lock. When antibodies recognize them, latch on, and prevent them from binding to cells, they prevent infection. But when spike proteins mutate, antibodies do a double take. In the case of the more contagious Delta variant that emerged in 2021, mutations on the spike proteins have made it more contagious and reduced the efficacy of some antibody therapies. What if there was a way to predict which mutations could emerge next - and therefore prepare for them?

Some antibodies which can bind to different locations have been used in treatment cocktails given to COVID-19 patients. But the strains of the virus now circulating within the US are different enough that some of these antibody therapies no longer seem effective. So first, the researchers set out to identify mutations on the spike protein that could prevent these antibodies from working. Then they wanted to predict what mutations are likely to occur next - what could become the zeta, eta or theta variant? The researchers developed a genetically engineered strain of common baker’s yeast, which could display different portions of the viral spike protein on its surface. The team then discovered how to screen through thousands of mutations in a single test tube to find the ones that evaded neutralizing antibodies.

As some home-bound bakers discovered in 2020 while experimenting with sourdough starters, yeast grows quite quickly. This means that the researchers can see a wide variety of mutations develop at the same speed at which the yeast can grow - leaps and bounds faster than the rate at which mutations will emerge in real time. This could give scientists an invaluable head start. The researchers have already found some of the same mutations now circulating the globe, as well as identified more mutations with the potential to evade our immune systems. They will also provide all their libraries of information, methods and software as an openly available community resource to accelerate new therapeutic strategies against SARS-CoV-2. This means the next COVID-19 vaccine or booster shot produced for the public could have the ability to pack the most punch possible. It also gives hope for those who are immunocompromised or remain at a higher risk of contracting a bad case, as this research can be applied to proactively prepare antibody cocktails for specific mutations, giving them a better chance at survival and recovery. But the promise doesn’t stop there. Due to the adaptability of new mRNA vaccines which work with spike proteins, the applications of this research are not limited to one virus.

“We’ve developed a predictive tool that can tell you ahead of time which antibodies are going to be effective against circulating strains of virus,” said lead author Timothy Whitehead, associate professor of chemical and biological engineering. “But the implications for this technology are more profound: If you can predict what the variants will be in a given season, you could get vaccinated to match the sequence that will occur and short-circuit this seasonal variation. You can use it for mapping trajectories for influenza and for HIV potentially; for other viral diseases that are known, and also potentially emerging pandemic ones.”

Related Links:
University of Colorado Boulder


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
COVID-19 NAb Test Solution
COVID-19 NAb Test Solution
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.