Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App





Low Cost, Saliva-Based COVID-19 Test Inspired by Glucose Test Strips for Diabetes Detects SARS-CoV-2 in 15 Minutes

By LabMedica International staff writers
Posted on 17 Jun 2021
Researchers are developing a rapid, low cost and mass manufacturable saliva-based biosensor test for COVID-19 inspired by the glucose test strips used to check blood sugar levels in people with diabetes.

The team from the University of Strathclyde (Glasgow, Scotland) claims that the test could eventually be mass manufactured for as little as 20 pence per test. More...
It is designed for rapid in the field use, similar to a lateral flow test, to allow people in community settings to determine their COVID-19 status.

When a person is self-testing, they would put saliva directly onto the test strip where the measurement is run by the instrument and the result produced on a display, avoiding the discomfort associated with nasopharyngeal swabs. Compared to other diagnostic tests, glucose blood tests can already be manufactured at scale, with test strips and readers CE marked with regulatory approval for use in the management of diabetes. This means the route to producing a COVID-19 test based on the technology can be much quicker.

The team of researchers has applied a special chemical treatment to the sensor surface to produce the test, which uses the ACE2 enzyme - the receptor that coronavirus uses to bind on to cells - meaning clinically relevant detection levels of the virus can be achieved. The experimental sensor was initially tested with inactivated virus samples at different concentrations, ranging from low to high, alongside negative samples from a commercially available molecular diagnostics standards kit. Hospital laboratory tests were then carried out on real patient samples and most recent set of experiments showed detection was possible in 15 minutes.

The team has patented the experimental technology and will use clinical samples to translate this proof of concept work into a working product. The aim is to develop the test into a CE marked commercial product for real world use. The first version of the test for emergency use is expected to be ready in 12 months and a fully CE marked test is likely to be on the market in 18-24 months.

“The test would provide a scalable route to sensitive, specific, rapid and low-cost testing for COVID-19, but in addition could serve as a low cost tool to rapidly diagnose other respiratory viruses and determine whether someone has COVID-19, flu or rhinovirus,” said lead investigator, Dr. Damion Corrigan from the department of Biomedical Engineering at Strathclyde. “This means it could enable screening of workers, at very low cost, for example in their place of work, identifying and isolating those with the disease and enabling those recovered to go back to work. Initially, we will demonstrate this with COVID-19 and then commercialize the test so that we can work on using the underlying patent to produce new sensor technologies for other respiratory viruses and infectious diseases.”

Related Links:
The University of Strathclyde


Platinum Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
SARS-COV-2 PLUS UK Real Time PCR kit
SARS-COV-2 PLUS UK REALTIME PCR KIT
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.