Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App





Novel Chip-Based Antigen Test Provides Ultrasensitive Detection of SARS-CoV-2 and Influenza A

By LabMedica International staff writers
Posted on 12 May 2021
A novel chip-based diagnostic technology can detect individual viral antigens in nasal swab samples to identify the viruses that cause COVID-19 and flu with a single test.

Researchers at UC Santa Cruz (Santa Cruz, CA, USA) have developed a novel chip-based antigen test that can provide ultrasensitive detection of SARS-CoV-2 and influenza A, the viruses that cause COVID-19 and flu, respectively. More...
The test is sensitive enough to detect and identify individual viral antigens one by one in nasal swab samples. This ultrasensitive technique could eventually be developed as a molecular diagnostic tool for point-of-care use.

The new chip-based antigen test is not only highly sensitive, but also enables simultaneous testing for multiple viruses from one sample. This is important for diseases such as COVID-19 and flu which have similar symptoms. Measures implemented to control the COVID-19 pandemic have reduced the incidence of flu dramatically, but in the future doctors may need a rapid test that can tell them which respiratory virus a patient is infected with.

The researchers have pioneered “optofluidic chip” technology for biomedical diagnostics, combining microfluidics (tiny channels for handling liquid samples on a chip) with integrated optics for optical analysis of single molecules. To develop the new antigen test, the team designed a fluorescent probe bright enough that individual markers can be detected optically on the chip. The test uses an “antibody sandwich” approach commonly used for immunoassays. In this case, antibodies specific for the target antigen are attached to magnetic microbeads, so that any target antigen present in the sample sticks to the beads. After washing, a second antibody with the fluorescent marker attached is added, and it binds to any target antigen present on the beads. The fluorescent markers are attached to the antibodies by a spacer that can be cleaved by ultraviolet light, which releases the markers to flow through the detection chip where they are detected one by one. The researchers attached a green marker to the coronavirus antibody and a red marker to the influenza antibody to distinguish between the two viruses.

“This is a chip-based biosensor capable of detecting individual proteins one at a time, and we show how it can be used to detect and identify the antigens for multiple diseases at the same time,” said senior author Holger Schmidt, professor of electrical and computer engineering at UC Santa Cruz. “It’s a whole new way of looking for molecular biomarkers, not only for infectious diseases, but for any protein biomarkers used in medical testing.”

Related Links:
UC Santa Cruz


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
SARS-CoV-2 & Flu A/B RT-PCR Test
Mplex SARS-CoV-2+, Flu A, Flu B (C1) RT-PCR
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.