Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





New COVID-19 Test to Scan Saliva or Nasal Swabs Using Specialized Probes for Detecting SARS-CoV-2 RNA Sequences

By LabMedica International staff writers
Posted on 25 Feb 2021
A newly-developed test has the ability to analyze and detect the many subtle changes that can occur in the SARS-CoV-2 viral genome - so-called variants, such as those first identified in the UK and South Africa.

The technique, being developed by researchers at Johns Hopkins Medicine (Baltimore, MD, USA), scans biological specimens, including saliva or nasal swabs, using specialized DNA probes that sift through a complex “forest” of RNA sequences. More...
The probes can detect specific RNA sequences of viruses and other disease-causing pathogens. The team has named their test “cRASL-seq” (pronounced krazzle-seek) which stands for capture RNA-mediated oligonucleotide annealing selection and ligation with next generation DNA sequencing.

The cRASL-seq test uses DNA sequencing instruments, which are able to analyze hundreds to thousands of samples at a time. Each test can detect not only SARS-CoV-2, but many other infectious organisms, say the scientists. Additionally, cRASL-seq skips a step that is required with most of the currently available tests for SARS-CoV-2. Most tests rely on RNA purification kits, which have often been in short supply, hampering efforts to test large swaths of people. The new test does not rely on such purification kits. Rather, it uses specific probes and magnetic beads to capture target RNA at the same time that the detection probes are binding to the viral RNA. The team is continuing to improve the cRASL-seq technology, expanding the test to detect additional organisms and new SARS-CoV-2 variants as they emerge.

“Detecting and tracking the genetic changes associated with these new strains is an enormous priority,” says Ben Larman, Ph.D., assistant professor of pathology and director of the Laboratory of Precision Immunology within the Institute for Cell Engineering at the Johns Hopkins University School of Medicine. “Sequencing instruments are ubiquitous now. This type of laboratory test could be adopted by centers all over the world to detect emerging pathogens and even resistance elements associated with bacterial and fungal infections.”

Related Links:
Johns Hopkins Medicine


Platinum Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
SARS-CoV-2 RT PCR Kit
SARS-CoV-2 Variant Lambda (C.37) Real Time PCR Kit (RUO)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.