Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





NIH’s RADx Initiative to Speed Development of Rapid and Widely Accessible COVID-19 Testing

By LabMedica International staff writers
Posted on 01 May 2020
The National Institutes of Health {(NIH) Bethesda, MD, USA} has announced a new initiative aimed at speeding innovation, development and commercialization of COVID-19 testing technologies.

With an investment of USD 1.5 billion from federal stimulus funding, the newly launched Rapid Acceleration of Diagnostics (RADx) initiative will infuse funding into early innovative technologies to speed development of rapid and widely accessible COVID-19 testing. More...
At the same time, the NIH will seek opportunities to move more advanced diagnostic technologies swiftly through the development pipeline toward commercialization and broad availability. NIH will work closely with the US Food and Drug Administration, the Centers for Disease Control and Prevention and the Biomedical Advanced Research and Development Authority (BARDA) to advance these goals. The stimulus investment supercharges the NIH’s strong research efforts already underway focused on prevention and treatment of COVID-19, including the recently announced planned Accelerating COVID-19 Therapeutic Interventions and Vaccines public-private partnership to coordinate the international research response to the pandemic.

While diagnostic testing has long been a mainstay of public health, newer technologies offer patient- and user-friendly designs, mobile-device integration, reduced cost and increased accessibility both at home and at the point of care. RADx will expand the Point-of-Care Technologies Research Network (POCTRN) established several years ago by NIBIB. The network will use a flexible, rapid process to infuse funding and enhance technology designs at key stages of development, with expertise from technology innovators, entrepreneurs and business leaders across the country. Led by the Coordinating Center at CIMIT, the network has assembled expert review boards covering scientific, clinical, regulatory and business domains that will rapidly evaluate technology proposals. In order to roll out new products starting at the end of summer/fall 2020, a rapid, parallel process will allow quick throughput of projects which will be assessed at each milestone and must demonstrate significant progress to receive continued support.

As part of this initiative, the NIH is urging all scientists and inventors with a rapid testing technology to compete in a national COVID-19 testing challenge for a share of up to USD 500 million over all phases of development. The technologies will be put through a highly competitive, rapid three-phase selection process to identify the best candidates for at-home or point-of-care tests for COVID-19. Finalists will be matched with technical, business and manufacturing experts to increase the odds of success. If certain selected technologies are already relatively far along in development, they can be put on a separate track and be immediately advanced to the appropriate step in the commercialization process. The goal is to make millions of accurate and easy-to-use tests per week available to all Americans by the end of summer 2020, and even more in time for the flu season.

“We need all innovators, from the basement to the boardroom, to come together to advance diagnostic technologies, no matter where they are in development,” said NIH Director Francis S. Collins, M.D., Ph.D. “Now is the time for that unmatched American ingenuity to bring the best and most innovative technologies forward to make testing for COVID-19 widely available.”

“Americans are innovators and makers,” said Bruce J. Tromberg, Ph.D., director of NIH’s National Institute of Biomedical Imaging and Bioengineering (NIBIB). “We need American tech experts, innovators and entrepreneurs to step up to one of the toughest challenges we’ve faced as a country, to help get us safely back to public spaces.”

Related Links:
National Institutes of Health (NIH)


Platinum Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Flock Tipped Applicator
HydraFlock 6" Sterile Large Flock Swab w/Polystyrene Handle, 80mm Breakpoint
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.