We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





Molecular Diagnostics (MDx) And Lateral Flow Assays (LAFs) Dominate COVID-19 Diagnostics, Says New Report

By LabMedica International staff writers
Posted on 30 Apr 2020
The need for universal and massive testing across the population has led to a race for technology innovations for COVID-19 diagnostics. More...
From the technological perspective, molecular diagnostics (MDx) and lateral flow assays (LAFs) dominate COVID-19 diagnostics.

These are the latest findings of IDTechEx (Cambridge, UK), a global market research firm, that have been published in its new report "COVID-19 Diagnostics".

Diagnostic testing is possibly the only efficient way to know the spread of the SARS-CoV-2 in time and space, enabling policymakers and healthcare workers to track and mitigate the outbreak of COVID-19. The demand for COVID-19 testing is estimated to be over 600 million tests including 120 million genetic tests and over 500 million rapid tests.

Molecules derived from the virus—nucleic acids like RNA or DNA, or proteins—form the basis of diagnostics as well as being essential for developing new therapies and vaccines. Depending on the target biomarkers, the diagnostic methods can be separated into two categories: genetic testing (detecting the viral genome) and serological & antigenic testing (detecting antibodies and viral antigens, respectively). From the technological perspective, MDx and LAFs dominate COVID-19 diagnostics.

The gold standard used across clinical laboratories is quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR, MDx), which requires a central lab setting. Such qRT-PCR testing lasts for more than 2 hour and the sample shipment cost up to several days. With the demand for quicker tests at community settings, the market is moving into point-of-care (POC) devices, including POC MDx and POC LFAs.

Microfluidics is the key technology behind POC MDx, which controls the motion of small amounts of fluids in microchannels. Microfluidic cartridges enable the miniaturization of devices and introduce automation in the sample handling and detection processes. Some POC MDx devices use isothermal amplification of nucleic acid as an alternative to PCR devices. Isothermal amplification bypasses the need of thermal cycling and reduces the detection time to just five minutes. Various isothermal amplification methods have been adopted for COVID-19 diagnostics. However, complex design and unspecific amplification hinder the widespread use of this method.

Apart from the time consuming thermal cycling, real-time fluorescent detection is another limitation for low-cost and portable diagnosis tools. LAFs, electrochemical detection and microbead-based arrays are integrated with PCR to detect the amplified genetic products. These hybrid systems enable faster, cheaper and palm-size devices at the expense of sensitivity and specificity. More recently, CRISPR-Cas (gene-editing tool based on specific gene recognition) and DNA sequencing techniques show the potential for highly sensitive and selective hybrid systems.

Apart from the effort from biotech, multiple software companies have developed algorithms to identify signs of COVID-19-related pneumonia in patient scans. CT imaging is an effective way of detecting abnormalities indicative of COVID-19, and image recognition AI algorithms have the potential to detect these abnormalities faster and more efficiently than radiologists.

Related Links:
IDTechEx


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
SARS-CoV-2 Test
One Step SARS-CoV-2 Nucleic Acid Detection Kit (P761H)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.