We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





New CRISPR-Based Test Diagnoses COVID-19 Infection in Less than an Hour

By LabMedica International staff writers
Posted on 20 Apr 2020
Scientists at UC San Francisco (San Francisco, CA, USA) and Mammoth Biosciences (San Francisco, CA, USA) have jointly developed an inexpensive new test that can rapidly diagnose COVID-19 infections. More...
The new test – officially named the “SARS-CoV-2 DETECTR” – is easy to implement and to interpret, and requires no specialized equipment, which is likely to make the test more widely available than the current crop of COVID-19 test kits.

The new SARS-CoV-2 DETECTR assay is among the first to use CRISPR gene-targeting technology to test for the presence of the novel coronavirus. Since CRISPR can be modified to target any genetic sequence, the test kit’s developers “programmed” it to home in on two target regions in the genome of the novel coronavirus. One of these sequences is common to all “SARS-like” coronaviruses, while the other is unique to SARS-CoV-2, which causes COVID-19. Testing for the presence of both sequences ensures that the new DETECTR tool can distinguish between SARS-CoV-2 and closely related viruses.

Much like the diagnostic kits currently in use, the new test can detect the novel coronavirus in samples obtained from respiratory swabs. However, the new test is able to provide a diagnosis much more quickly. While the widely used tests based on polymerase chain reaction (PCR) techniques take about four hours to produce a result from a respiratory sample, the new DETECTR test takes only 45 minutes.

Another key advantage of the new DETECTR test is that it can be performed in virtually any lab, using off-the-shelf reagents and common equipment. This is in stark contrast to PCR-based tests, which require expensive, specialized equipment, limiting those tests to well-equipped diagnostic labs. Plus, the new DETECTR test is easy to interpret: much like a store-bought pregnancy test, dark lines that appear on test strips indicate the presence of viral genes.

The new test is also highly sensitive. It can detect the presence of as few as 10 coronaviruses in a micro liter of fluid taken from a patient – a volume many hundreds of times smaller than an average drop of water. Though slightly less sensitive than existing PCR-based tests, which can detect as few as 3.2 copies of the virus per micro liter, the difference is unlikely to have a noticeable impact in diagnosis, as infected patients typically have much higher viral loads. The new test has yet to receive formal approval for clinical use from the US Food and Drug Administration, although UCSF researchers are clinically validating the test in an effort to fast-track the approval process through Emergency Use Authorization.

“The introduction and availability of CRISPR technology will accelerate deployment of the next generation of tests to diagnose COVID-19 infection,” said Charles Chiu, MD, PhD, professor of laboratory medicine at UCSF and co-lead developer of the new test, which is described in a paper published April 16, 2020, in the journal Nature Biotechnology.

Related Links:
UC San Francisco
Mammoth Biosciences



Platinum Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Nucleic Acid Isolation Kit
MagMAX™ Viral/Pathogen Ultra Nucleic Acid Isolation Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.