We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Roche Diagnostics

Develops, manufactures, and markets a wide range of in vitro diagnostic systems, instruments, reagents, and tests read more Featured Products: More products

Download Mobile App





RT-LAMP Assay Developed for SARS-CoV-2

By LabMedica International staff writers
Posted on 20 Apr 2020
SARS-CoV-2 is the causative viral pathogen of COVID-19, and diagnosis of COVID-19 can be done through CT scan of suspicious patients and a confirmatory laboratory test is performed using published real-time quantitative polymerase chain reaction (RT-qPCR) methods. More...


Although RT-qPCR methods are used as the gold-standard for detection of pathogens due to its high sensitivity and specificity, it still have some caveats. To overcome any restriction of RT-qPCR and still detect pathogens’ nucleic acids, isothermal amplification methods have been developed. Among such methods, Loop-mediated isothermal amplification (LAMP) method has some advantages to be applied for point-of-care test (POCT). Well optimized LAMP assay shows sensitivity comparable to that of PCR, less than 10 copies per reaction.

Scientists at the Korea Research Institute of Chemical Technology (Daejeon, Republic of Korea) and their colleagues developed and evaluated RT-LAMP assays to detect genomic RNA of SARS-CoV-2. The team used SARS-CoV-2 viral RNA that was prepared as previously described. hCoV-229E and hCoV-OC43 viral RNA were isolated from culture media of infected MRC-5 cells and MERS-CoV RNA was isolated from cell pellet lysate of infected Vero cells. To evaluate genomic copy number of viral RNAs, dilutions of standard RNAs and viral RNAs in TE buffer were subjected to one-step RT-qPCR. RT-qPCR reactions were carried out using a LightCycler 96 instrument (Roche Molecular Systems, Inc, Pleasanton, CA, USA).

The team reported that RT-LAMP assays used in their study can detect as low as 100 copies of SARS-CoV-2 RNA. Five out of seven primer sets showed specific amplification for at least one replicate of duplicate with cDNA concentration corresponding to 1.7 x 101 copies of input RNA. Cross-reactivity of RT-LAMP assays to other human Coronaviruses was not observed. The lauco crystal violet (LCV) method was applied to achieve colorimetric detection of LAMP reaction for their RT-LAMP assay so that the tests potentially performed in higher throughput.

The authors concluded that they have developed highly specific RT-LAMP assays for detection of SARS-CoV-2. The results of these RT-LAMP assays can be detected within 30 minutes after amplification reaction began. In addition, they provided optimized reaction conditions to which LCV colorimetric detection method is applied that can be used for point-of-care tests. The study was published on April 7, 2020 in The Journal of Molecular Diagnostics.



Platinum Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
COVID-19, Flu A/B Multiplex RT-PCRTest
TaqPath COVID-19, FluA, FluB Combo Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.