We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Anti-Müllerian Hormone Linked to Lipid Levels in Midlife Women

By LabMedica International staff writers
Posted on 20 Dec 2022

Throughout the period before, during and after menopause, also known as the menopause transition, midlife women are at a heightened risk for cardiovascular disease with changes in their lipid levels, such as a sharp increase in low-density lipoprotein cholesterol (LDL-C). More...

Anti-Müllerian hormone (AMH), also known as Müllerian-inhibiting hormone (MIH), is a glycoprotein hormone structurally related to inhibin and activin from the transforming growth factor beta superfamily, whose key roles are in growth differentiation and folliculogenesis.

Scientists at the University of Pittsburgh (Pittsburgh, PA, USA) evaluated the independent associations of premenopausal AMH and E2 levels and their changes with lipids/lipoproteins levels [total cholesterol (TC), triglyceride (TG), LDL-C, high-density lipoprotein cholesterol (HDL-C), apolipoprotein B (apoB) and apolipoprotein A-1 (apoA-1)] over the menopause transition (MT).

The study included 1,440 women (baseline-age: mean ± SD=47.4 ± 2.6) with data available from up to nine visits (1997-2013). Lower premenopausal levels and greater declines in AMH were independently associated with greater TC and HDL-C, whereas lower premenopausal levels and greater declines in E2 were independently associated with greater TG and apoB and lower HDL-C. Greater declines in AMH were independently associated with greater apoA-1, and greater declines in E2 were independently associated with greater TC and LDL-C.

Samar R. El Khoudary, PhD, MPH, Professor of Epidemiology and senior author of the study, said, “AMH can be used to measure how long your ovaries can keep producing eggs. The more eggs there are the higher AMH; the fewer eggs, the lower the level of AMH. When the levels become very low, we can use it to predict menopause. We wanted to understand the mechanism behind lipid changes during the menopause transition and understand how this new biomarker, AMH, interacts with estrogen and impacts lipids.”

The authors concluded that AMH and E2 and their changes over the MT relate differently to lipids/lipoproteins profile in women during midlife. Lower premenopausal and/or greater declines in E2 over the MT were associated with an atherogenic lipid/lipoprotein profile. On the other hand, lower premenopausal AMH and/or greater declines in AMH over the MT were linked to higher apo A-1 and HDL-C; the later found previously to be related to a greater atherosclerotic risk after menopause. The study was published on November 21, 2022 in the Journal of Clinical Lipidology.

Related Links:
University of Pittsburgh


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.