We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

DIASORIN

DiaSorin develops, produces and commercializes diagnostic tests for a wide range of clinical areas. The company’s tes... read more Featured Products: More products

Download Mobile App




Vitamin D Deficiency Has Greater Risk for All-Cause Mortality

By LabMedica International staff writers
Posted on 18 Nov 2021
Observational epidemiological studies have consistently found that low concentrations of circulating 25-hydroxyvitamin D (25[OH]D), a metabolite used as a clinical indicator of vitamin D status, are associated with an increased risk of cardiovascular disease and all-cause mortality, as well as other chronic diseases.

An efficient approach for assessing the potential causal effect of vitamin D supplementation is Mendelian randomization. More...
Mendelian randomization uses genetic variants specifically related to a particular exposure to compare genetically-defined population subgroups with different average levels of the exposure.

An international team of Medical Scientists in collaboration with and led by the University Hospital Würzburg (Wurzburg, Germany) undertook observational analyses using data from 33 prospective studies comprising 500,962 individuals with no known history of coronary heart disease or stroke at baseline. Mendelian randomization analyses were performed in four population-based cohort studies, comprising 386,406 middle-aged individuals of European ancestries, including 33,546 people who developed coronary heart disease, 18,166 people who had a stroke, and 27,885 people who died.

Primary outcomes were coronary heart disease, defined as fatal ischemic heart disease or non-fatal myocardial infarction; stroke, defined as any cerebrovascular disease; and all-cause mortality. The team measured concentrations of 25(OH)D in blood using the Liaison immunoassay analyser (DiaSorin; Saluggia, Italy) in the UK Biobank and Copenhagen studies, and liquid chromatography-tandem mass spectrometry in the EPIC-CVD study. In the Vitamin D Studies Collaboration (VitDSC), concentrations were measured by radioimmunoassay, direct chromatographic approaches, or other immunoassays. The team considered genetic variants from four gene regions previously shown to be strongly associated with 25(OH)D and implicated in the transport, metabolism, and synthesis of vitamin D: GC, DHCR7, CYP2R1, and CYP24A1. The GC gene encodes vitamin D binding protein.

The investigators reported that observational analyses suggested inverse associations between incident coronary heart disease, stroke, and all-cause mortality outcomes with 25(OH)D concentration at low 25(OH)D concentrations. In population-wide genetic analyses, there were no associations of genetically-predicted 25(OH)D with coronary heart disease, stroke, or all-cause mortality. However, for the participants with vitamin D deficiency (25[OH]D concentration <25 nmol/L), genetic analyses provided strong evidence for an inverse association with all-cause mortality (odds ratio [OR] per 10 nmol/L increase in genetically-predicted 25[OH]D concentration (0.69) and non-significant inverse associations for stroke (0.85) and coronary heart disease (0.89). A finer stratification of participants found inverse associations between genetically-predicted 25(OH)D concentrations and all-cause mortality up to around 40 nmol/L.

The authors concluded that they had found genetic evidence to suggest a causal relationship between 25(OH)D concentrations and mortality in individuals with low vitamin D status. The results have implications for the interpretation and design of vitamin D supplementation trials, and potential disease prevention strategies. The study was published on October 27, 2021in the journal The Lancet Diabetes & Endocrinology.

Related Links:
University Hospital Würzburg
DiaSorin



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Nasopharyngeal Applicator
CalgiSwab 5.5" Sterile Mini-tip Calcium Alginate Nasopharyngeal Swab w/Aluminum HDLE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.