We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Immune Response to Insulin Identifies Risk of Juvenile-Diabetes

By LabMedica International staff writers
Posted on 08 Mar 2021
Type 1 diabetes (T1D), also known as juvenile diabetes, is a form of diabetes in which very little or no insulin is produced by the islets of Langerhans (containing β-cells) in the pancreas. More...
Insulin is a hormone required for the body to use blood sugar.

T-cell responses to posttranslationally modified self-antigens are associated with many autoimmune disorders. Type 1 diabetes (T1D) is a prototypical organ-specific autoimmune disease that results from the T-cell–mediated destruction of insulin-producing β-cells within pancreatic islets. The natural history of the disease is such that it allows for the study of T-cell reactivity prior to the onset of clinical symptoms.

Diabetes Specialists at the University of Colorado Anschutz Medical Campus (Aurora, CO, USA) collected blood samples from genetically at-risk adolescents every six months for two years. The team measured T-cell responses from genetically at-risk individuals to both naturally occurring insulin and hybrid insulin peptides, novel neo-epitopes implicated in T1D pathogenesis.

The scientists reported that both proinflammatory (interferon-γ) and anti-inflammatory (interluekin-10) cytokine responses to hybrid insulin peptides (HIPs) were more robust than those to native peptides, and the ratio of such responses oscillated between pro- and anti-inflammatory over time. However, individuals who developed islet autoantibodies or progressed to clinical type 1 diabetes had predominantly inflammatory T-cell responses to HIPs. Additionally, several HIP T-cell responses correlated to worsening measurements of blood glucose, highlighting the relevance of T-cell responses to posttranslationally modified peptides prior to autoimmune disease development.

Aaron W. Michels, MD, an Associate Professor specializing in Endocrinology, Diabetes and Metabolism, and a senior study author, said, “We want to know why people develop T1D, and this research has helped provide a lot more information and data as to what it looks like when genetically at-risk individuals are headed towards clinical diagnosis. Ideally, you want to treat a disease when it’s active, so this is a need in our field to understand when people have an immune response directed against insulin producing cells.”

The authors concluded that their results have important implications to stratify the risk of developing T1D and identifying individuals who may benefit from immune intervention studies. The study was published on February 9, 2021 in the journal Proceedings of the National Academy of Sciences of the United States of America.

Related Links:
University of Colorado Anschutz Medical Campus


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.