We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Metabolite Profiling Reveals Predictive Biomarkers for Amyotrophic Lateral Sclerosis

By LabMedica International staff writers
Posted on 11 Jun 2020
Amyotrophic Lateral Sclerosis (ALS) is characterized by stiff muscles, muscle twitching, and gradually worsening weakness due to muscles decreasing in size. More...
It may begin with weakness in the arms or legs, or with difficulty speaking or swallowing.

ALS is a progressive neurodegenerative disease that causes deterioration of nerve cells in the brain and spinal cord. Currently, treatments are hampered by lack of definitive targets, a diagnostic process that often takes over a year to complete, and insufficient and subjective methods for monitoring progression.

Scientists at North Carolina State University (Raleigh, NC, USA) and their colleagues from Macquarie University (Macquarie Park, Australia) took blood plasma samples for 134 (81 males and 53 females) ALS patients and 118 (49 males; 69 females) healthy individuals. The teams used chip-based capillary zone electrophoresis coupled to high resolution mass spectrometry to identify and analyze blood plasma metabolites in the samples. This method quickly breaks the plasma down into its molecular components, which are then identified by their mass. The investigators developed two computer algorithms: one to separate healthy and ALS samples and the other to predict disease progression.

The scientists reported that the most significant metabolism markers were associated with muscle activity: elevated levels of creatine, which aids muscle movement, and decreased levels of creatinine and methylhistidine, which are byproducts of muscle activity and breakdown. Creatine was 49% elevated in ALS patients, while creatinine and methylhistidine decreased by 20% and 24%, respectively. Additionally, the ratio of creatine versus creatinine increased 370% in male, and 200% in female, ALS patients.

In addition, male ALS patients on average had 5%-13% lower amounts of seven essential amino acids while females did not significantly differ from healthy controls. A support vector machine classifier predicted progression categories with an AUC of 0.90 with a mean sensitivity of 73% and specificity of 86%. The team used a stable isotope labeled (13C315N2) spike-in standard, but were unable to detect the exogenous neurotoxic metabolite, β-methylamino-L-alanine (BMAA), in the free or protein bound fraction of any of the 252 plasma samples.

Michael Bereman, PhD, an associate professor and corresponding author of the study, said, “Early diagnosis is important, but we are in dire need of quantitative markers for monitoring progression and the efficacy of therapeutic intervention. Since disruptions in metabolism are hallmark features of ALS, we wanted to investigate metabolite markers as an avenue for biomarker discovery. Creatine deficiency alone does not seem to be a problem and our results confirm that the creatine kinase pathway of cellular energy production, known to be altered in ALS, is not working as well as it should.” The study was published on May 17, 2020 in the Journal of Proteome Research.

Related Links:
North Carolina State University
Macquarie University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Rapid Flu Test
Influenza A&B Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.