Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Metabolic Classification of Thyroid Nodules Uses MS Imaging

By LabMedica International staff writers
Posted on 26 Oct 2019
Fine-needle aspiration (FNA) biopsy is a well-established technique for diagnosis of suspicious thyroid lesions. More...
However, histologic discrimination between malignant and benign thyroid nodules from FNA can be challenging.

Each year, thanks to inconclusive tests for thyroid cancer, thousands of people undergo unnecessary surgeries to remove part or all of their thyroids. A new test based on the unique chemical fingerprints of thyroid cancer might change that and it is faster and about two-thirds more accurate than the diagnostic tests doctors use today.

Biochemists at the University of Texas at Austin (Austin, TX, USA) and their colleagues used a technology called mass spectrometry imaging. The new metabolic thyroid test identifies metabolites produced by cancerous cells that act as a kind of diagnostic fingerprint. The team worked on identifying these diagnostic metabolic fingerprints for over two years using 178 patient tissues before starting a pilot clinical study. During the clinical study, 68 new patients were tested, nearly a third of who had received inconclusive FNA results. The new metabolic thyroid test returned a false positive only about 1 time in 10 and could have prevented 17 patients in the study from undergoing unnecessary surgeries.

The scientists employed desorption electrospray ionization mass spectrometry (DESI-MS) imaging to diagnose thyroid lesions based on the molecular profiles obtained from FNA biopsy samples. Based on the molecular profiles obtained from malignant thyroid carcinomas and benign thyroid tissues, classification models were generated and used to predict on DESI-MSI data from FNA material with high performance. Their results demonstrate the potential for DESI-MSI to reduce the number of unnecessary diagnostic thyroid surgeries.

James W. Suliburk, MD, FACS, a co-principal investigator and head of endocrine surgery at Baylor College of Medicine (Houston, TX, USA) said, “With this next generation test, we can provide thyroid cancer diagnoses faster and with more precision than current techniques, this will be the new state-of-the-art. We are able to do this analysis directly on the FNA sample and much more rapidly than the current process, which could take between three and 30 days.” The study was published on October 7, 2019, in the journal Proceedings of the National Academy of Sciences.

Related Links:
University of Texas at Austin
Baylor College of Medicine


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.