We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Pathology Differences Distinguish CTE from Azheimer's Disease

By LabMedica International staff writers
Posted on 01 Apr 2019
Neurological disease researchers have found an important difference that distinguishes the molecular pathology of Chronic Traumatic Encephalopathy (CTE) from that of Alzheimer's disease (AD).

CTE is a neurodegenerative tauopathy - a pathological aggregation of tau protein in neurofibrillary or gliofibrillary tangles in the brain - that is associated with repetitive head impacts or exposure to blast waves. More...
It was described first as "punch-drunk syndrome" and dementia pugilistica in retired boxers, but has since been identified in former participants of other contact sports, ex-military personnel, and after physical abuse. No disease-modifying therapies currently exist, and diagnosis requires an autopsy. In AD, tau undergoes chemical changes, becoming hyperphosphorylated; it then begins to pair with other threads, creating neurofibrillary tangles and disintegrating the neuron's transport system.

Investigators at Indiana University School of Medicine (Indianapolis, USA) used cryo-electron microscopy (cryo-EM) to demonstrate a fundamental difference between the tau tangles of CTE and those of AD. Cryo-EM is an analytical technique that provides near-atomic structural resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.

The investigators determined the structures of tau filaments from the brains of three individuals with CTE at resolutions down to 2.3 Angstroms, using cryo-electron microscopy. They showed that filament structures were identical in the three cases but were distinct from those of Alzheimer’s and Pick’s diseases, and from those formed in vitro. In CTE, a different conformation of the beta-helix region created a hydrophobic cavity that was absent in tau filaments from the brains of patients with Alzheimer’s disease. This cavity enclosed an additional density that was not connected to tau, which suggested that the incorporation of cofactors may have a role in tau aggregation in CTE. The discovery of the difference between pathogenic tau of CTE and that of AD offers options for improved diagnosis and potential targeted treatments.

Contributing author Dr. Ruben Vidal, professor in the of pathology and laboratory medicine at Indiana University School of Medicine, said, "These two new discoveries provide more insights into CTE than had previously existed. The information will be incredibly valuable for the development of novel agents to help in diagnosis and therapeutics specifically designed for individuals fighting CTE."

The cryo-EM study was published in the March 20, 2019, online edition of the journal Nature.

Related Links:
Indiana University School of Medicine


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.