We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




High-Sensitivity Cardiac Troponin I Assay Validated

By LabMedica International staff writers
Posted on 20 Sep 2018
Myocardial infarction (MI), commonly known as a heart attack occurs when blood flow decreases or stops to a part of the heart, causing damage to the heart muscle. More...
The most common symptom is chest pain or discomfort which may travel into the shoulder, arm, back, neck, or jaw.

The diagnosis of myocardial infarction requires two out of three components, history, electrocardiogram (ECG), and levels of certain enzymes. When damage to the heart occurs, levels of cardiac markers rise over time, which is why blood tests for them are taken over a 24-hour period.

Scientists at the University Hospital Basel (Basel, Switzerland) and their international colleagues enrolled 1,755 patients presenting to the emergency department with symptoms suggestive of acute myocardial infarction (AMI). Final diagnoses were centrally adjudicated by two independent cardiologists including all clinical information twice.

The team used serial Troponin T-high sensitive assay for primary analysis; secondly, they used using High Sensitive Troponin-I for secondary analysis measurements. In addition they clinically applied high sensitivity cardiac troponin (hs-cTnI), which was measured at presentation, one hour and two hours.

AMI was the final diagnosis in 318 of 1,755 (18%) patients using the Roche-hs-cTnT-Elecsys for adjudication. The area under the curve (AUC) at presentation for Siemens-hs-cTnI-Centaur was 0.94 and comparable with 0.95 for Roche-hs-cTnT-Elecsys and 0.93 for Abbott-hs-cTnI-Architect. Applying the derived Siemens-hs-cTnI-Centaur 0/1-h algorithm to the validation cohort, 46% of patients were ruled out (sensitivity, 99.1%, and 18% of patients were ruled in, specificity, 94.1%. The Siemens-hs-cTnI-Centaur 0/2-h algorithm ruled out 55% of patients (sensitivity, 100%), and ruled in 18% of patients (specificity, 96.0%). Findings were confirmed in the secondary analyses using serial measurements of Abbott-hs-cTnI-Architect for adjudication.

The authors concluded that diagnostic accuracy and clinical utility of the novel Siemens-hs-cTnI-Centaur assay are high and comparable with the established hs-cTn assays. The study was published in August 2018 in the journal Clinical Chemistry.

Related Links:
University Hospital Basel


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.