We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Highly Sensitive Detection Method Monitors HDL Kinetics

By LabMedica International staff writers
Posted on 28 Apr 2016
High-density lipoprotein (HDL) is often referred to as good cholesterol, and high levels of HDL are associated with lower risk of cardiovascular disease, but many clinical outcome trials for drugs that raise HDL levels have failed to show significant benefits for trial participants.

Current HDL detection methods usually measure only total HDL cholesterol, but a more sensitive detection method could allow investigators to measure the subfractions of HDL, and more precisely pinpoint which of these subfractions should be raised to help protect against cardiovascular events.

Scientists at Brigham and Women's Hospital (Boston, MA, USA) and their colleagues studied three participants, two female and one male who were ages 25, 33, and 49 years old; were overweight or obese with a body mass index (BMI) of 26, 31, and 31 kg/m2; and had low HDL-C levels of 48, 37, and 24 mg/dl, respectively. More...
The three participants ate a controlled, high-unsaturated-fat diet for 32 days, 28 days prior to the kinetic study, and four days during the kinetic study.

Total plasma leucine (D3-Leu labeled and endogenous) was isolated from 0.2 mL of plasma from different time points and measured using a Gas Chromatograph/ Mass Spectrometer (GC/MS) 6890 GC, 5973 MS, (Agilent Technologies, Santa Clara, CA, USA). HDL was separated by size using nondenaturing polyacrylamide gel electrophoresis (ND-PAGE). Spectral counting was used for the relative quantification of the apolipoproteins. Peptide samples were analyzed with the Q Exactive mass spectrometer fronted with a Nanospray FLEX ion source, and coupled to an Easy-nLC1000 High performance liquid chromatography (HPLC) pump (Thermo Fisher Scientific, Bremen, Germany).

The investigators were able to identify 58 proteins in HDL that were shared among three participants. They followed up on seven of these proteins, monitoring their kinetics to better understand apolipoprotein metabolism and the formation of HDL particles. Their results suggest that the traditional view of the role of HDL in reverse cholesterol transport may oversimplify the roles and contributions of various components of HDL.

The authors concluded that their study demonstrated the feasibility of closer monitoring of HDL kinetics. They believe that establishing new, high-resolution methods that can monitor HDL kinetics is critical to examine the desired effects of new drugs. This approach not only revealed novel evidence for the formation of HDL particles, but also found that each HDL subfraction has a unique proteome, which may help to discover new therapeutic targets. The study was published on April 1, 2016, in Journal of Lipid Research.

Related Links:
Brigham and Women's Hospital
Agilent Technologies
Thermo Fisher Scientific

Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.