We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Standardized Assays Developed to Quantify Human Proteins

By LabMedica International staff writers
Posted on 30 Dec 2013
The feasibility of large-scale standardized protein measurements, which are necessary for validation of disease biomarkers, has been developed. More...


Multiple reaction monitoring (MRM) mass spectrometry has been successfully applied to monitor targeted proteins in biological specimens, raising the possibility that assays could be configured to measure all human proteins.

Scientists at the Fred Hutchinson Cancer Research Center (Seattle, WA, USA) in collaboration with other intuitions targeted a protein-detection approach that has the potential to systematically and reliably measure the entire human repertoire of proteins, known as the proteome. The MRM technique can simultaneously and precisely detect the abundance of hundreds of proteins in many different samples. The teams of investigators were able to reproduce measurements of 319 proteins from human breast cancer cells, showing that the method can be standardized across laboratory and international boundaries.

This method enabled highly specific, precise, multiplex, quantification of a minimum of 170 proteins in 20 clinical samples per instrument per day— no other existing technology has this power. Because the mass spectrometry technique is targeted, meaning the scientists can tune the instruments to look for a specific subset of proteins in cancer cells or other sample types, it can detect the presence of proteins of interest at much lower levels in minute blood samples or biopsies than a nontargeted tactic.

Amanda Paulovich, MD, the senior author of the study, said, “This method has the potential to completely revolutionize how we measure human proteins. Having a global resource for standardized quantification of all human proteins would set new standards that would undoubtedly increase the reproducibility of preclinical research, which would have a dramatic impact on the translation of novel therapeutics and diagnostics. Right now, you can't make robust measurements of most human proteins. More than 10 years after the human genome has been sequenced and we have the full catalog of molecules as important as proteins, we still can't study the human proteome with any kind of throughput in a standardized, quantitative manner.” The study was published on December 8, 2013, in the journal Nature Methods.

Related Links:

Fred Hutchinson Cancer Research Center



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.