We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Metabolic Biomarker Identified for Diabetes Risk

By LabMedica International staff writers
Posted on 07 Oct 2013
Type 2 diabetes (T2D) is the most common form of diabetes and is associated with many complications, however, many individuals are unaware that they are at risk and do not change their lifestyle in time to avoid disease. More...


The metabolite 2-aminoadipic acid (2-AAA) has been identified as a biomarker for T2D diabetes risk and individuals with increased levels of 2-AAA had a much greater risk of developing diabetes than individuals with lower 2-AAA levels.

An international team of scientists collaborating with those at Massachusetts General Hospital (Boston, MA, USA) took plasma samples from two cohorts, and metabolite profiling was performed on samples from 1,937 attendees who were free of diabetes at baseline of whom 376 propensity-matched cases and controls and 1,561 randomly selected individuals.

The team employed methodology for profiling polar plasma metabolites using hydrophilic interaction (HILIC) and liquid chromatography-mass spectrometry (LC-MS). The data was acquired using ultra-performance liquid chromatography technology on an ACQUITY UPLC (Waters; Milford, MA, USA) coupled to a 5500 QTRAP triple quadrupole mass spectrometer (AB SCIEX; Redwood City, CA, USA).

Individuals with 2-AAA concentrations in the top quartile had greater than a four-fold risk of developing diabetes. Levels of 2-AAA were not well correlated with other metabolite biomarkers of diabetes, such as branched chain amino acids and aromatic amino acids, suggesting they reflect a distinct pathophysiological pathway.

The authors concluded that the application of a new metabolite profiling technique highlighting intermediary metabolites identified 2-AAA as a novel predictor of the development of diabetes. The relative risk associated with elevated 2-AAA concentrations was not attenuated by adjustment for standard biochemical measures of insulin resistance.

This investigation provides motivation to test whether plasma measurements of this molecule might help identify candidates for interventions to reduce diabetes risk and to elucidate the precise molecular pathways by which 2-AAA modulates insulin secretion, glucose homeostasis, and susceptibility to diabetes. The study was published on September 16, 2013, in the Journal of Clinical Investigation.

Related Links:

Massachusetts General Hospital
Waters
AB SCIEX



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.