We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Blood Test Determines Reduced and Oxidized Glutathione

By LabMedica International staff writers
Posted on 31 Jul 2013
Diminished levels of glutathione (γ-glutamylcysteinylglycine, GSH) and the ratio of GSH to glutathione disulfide (GSSG) can serve as important indicators of oxidative stress and disease risk. More...


A simple and sensitive liquid chromatography-tandem mass spectrometry (LC–MS/MS) method for measuring whole blood GSH and GSSG has been developed and can easily be implemented in clinical laboratories.

Scientists at Stanford University School of Medicine (CA, USA) developed an approach that minimizes preanalytical variability through a one-step procedure of deproteinization and derivatization that prevents artifactual oxidation of GSH, and is easily adapted to the clinical setting without requiring excessive constraints on sample handling or storage. The team used anonymous, residual blood samples from 59 healthy individuals, 31 males, and 28 females, with an age range 1 to 87 years, with a mean of 25 years.

Compounds were separated by liquid chromatography using a Hypercarb column (Thermo Scientific; Waltham, MA, USA) at room temperature. The GSH and GSSG ions and fragments were detected using the API 3000 triple-quadrupole mass spectrometer (Perkin-Elmer; Waltham, MA, USA). The final concentrations of GSH and GSSG were expressed in units of μmol/L of whole blood.

The lower limits of detection (LLOD) were 0.4 μM for GSH and 0.1 μM for GSSG and the lower limits of quantitation (LLOQ) were 1.5 μM for GSH and 0.1 μM for GSSG. There was excellent linearity for both GSH and GSSG over the ranges of physiologic normal, with inter- and intra-assay coefficient of variation of 3.1% to 4.3% and accuracy between 95% and 101%. Derivatized samples are stable for at least three years when stored at -80 °C and underivatized samples for at least 24 hours at either 4 °C or room temperature. As a group, the mean concentration ± standard deviation for GSH was 900 ± 140 μM, GSSG 1.17 ± 0.43 μM, and GSH/GSSG ratio was 880 ± 370.

The authors concluded that their LC–MS/MS method minimizes preanalytic variability through a one-step procedure of deproteinization and derivatization, and chromatographic conditions that eliminate ion suppression and increase precision and sensitivity. Additional advantages included the small sample requirement, simple and rapid preanalytical processing, and wide automation possibilities, which makes this method ideal for routine and large-scale clinical testing. The study was published on June 15, 2013, in the Journal of Chromatography B.

Related Links:

Stanford University School of Medicine
Thermo Scientific
Perkin-Elmer



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.