We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Live Cells Detect Food-Borne Pathogens, Toxins

By Labmedica staff writers
Posted on 11 Mar 2008
A new technology can simultaneously screen thousands of samples of food or water for several dangerous food-borne pathogens in one to two hours. More...
The technique also can estimate the amount of microbes present and whether they pose an active health risk. This could help neutralize potential threats and improve food-processing techniques.

The technology utilizes live mammalian cells that release a measurable amount of a signaling chemical when harmed. Optical equipment and computer software then analyze this quantity to estimate the amount of harmful microbes present. The technology can recognize very small amounts of Listeria monocytogenes; a bacterium that kills one in five infected, and is the leading cause of food-borne illness. It also recognizes several species of Bacillus, a non-fatal but common cause of food poisoning.

The cells are suspended in collagen gel, a substance that captures particles of a desired size, and put into small wells within multiwell plates. Each well can test one sample, so tests can be expanded to quickly analyze as many samples as desired. Because the technology tests for bacteria and toxins that attack cell membranes, cells are used with high amounts of alkaline phosphatase, the signaling chemical released upon damage to the cell membrane.

Samples of food and water are added to biosensor wells before being incubated for one to two hours. To each well a chemical is added that reacts with the biosensor's alkaline phosphatase, yielding a yellow product that is quantified by a special camera and a computer.

Actively harmful pathogens are identified whereas those that are inactive or harmless are ignored. Other tests lack this capability, making them prone to false alarms and entailing a relatively lengthy incubation period to culture any living microbes. The new technology's discerning power also could help optimize processes to kill harmful microbes or deactivate toxins.

The technique is versatile, and the multiwell plates and their contents of gel-suspended mammalian cells can be prepared in a central location. When desired, the plates could then be shipped to the test location, such as a food-processing plant, so that on-site analysis could take place.

The suspension of live mammalian cells within a collagen gel is unique, according to the scientists from Purdue University (West Lafayette, IN, USA) who developed the technique, which was described in the February 2008 issue of the journal Laboratory Investigation.


Related Links:
Purdue University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.