Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Novel Fluidic Nanodevices Created by Liquid 3D Printing

By LabMedica International staff writers
Posted on 08 May 2019
Researchers have used a novel three-dimensional (3D) printing technique to create an all-liquid fluidic device that is capable performing a wide range of applications - from making battery materials to screening drug candidates.

Systems comprised of immiscible liquids held in non-equilibrium shapes by the interfacial assembly and jamming of nanoparticle-polymer surfactants have significant potential to advance catalysis, chemical separations, energy storage, and conversion. However, directing spatial functionality within them and coupling processes in both phases has remained a challenge.

Investigators at Lawrence Berkeley National Laboratory (CA, USA) exploited nanoclay-polymer surfactant assemblies at an oil-water interface to produce a semi-permeable membrane between the liquids. Flow channels were fabricated using micropatterned two-dimensional (2D) substrates and liquid-in-liquid three-dimensional printing. The anionic walls of the device were functionalized with cationic small molecules, enzymes, and colloidal nanocrystal catalysts. Three-dimensional printing was used to build bridges between channels, connecting them so that a chemical flowing through them encountered catalysts in a specific order, setting off a cascade of chemical reactions to make specific chemical compounds.

The investigators reported in the March 6, 2019, online edition of the journal Nature Communications that multi-step chemical transformations could be conducted within the channels under flow, as could selective mass transport across the liquid-liquid interface for in-line separations. Ultimately, these all-liquid systems were automated using pumps, detectors, and control systems, revealing a latent ability for chemical logic and learning.

"What we demonstrated is remarkable. Our three-dimensional printed device can be programmed to carry out multistep, complex chemical reactions on demand," said senior author Dr. Brett Helms, staff scientist at Lawrence Berkeley National Laboratory. "What is even more amazing is that this versatile platform can be reconfigured to efficiently and precisely combine molecules to form very specific products, such as organic battery materials. The form and functions of these devices are only limited by the imagination of the researcher. Autonomous synthesis is an emerging area of interest in the chemistry and materials communities, and our technique for three-dimensional printing devices for all-liquid flow chemistry could help to play an important role in establishing the field."

Related Links:
Lawrence Berkeley National Laboratory


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.