Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Targeting MicroRNA Blocks Drug Tolerance in Some Cancers

By LabMedica International staff writers
Posted on 15 Apr 2019
Cancer researchers have suggested that by exploiting the link between a specific microRNA and the tricarboxylic acid energy-producing cycle it may be possible to prevent or reverse the development of drug tolerance or resistance by non-small-cell lung carcinomas.

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. More...
MiRNAs resemble siRNAs of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.

Non-small cell lung cancers, which comprise about 85% of lung cancer diagnoses, tend to be less aggressive but harder to treat than small cell lung cancers. About 10% of non-small-cell lung carcinomas carry an epidermal growth factor receptor (EGFR) mutation. Drug tolerance developed by cancer cells is an acute defense response preceding a fully drug-resistant state and tumor relapse; however, there are few therapeutic agents targeting drug tolerance in the clinic.

As part of their effort to identify drugs able to modify drug tolerance, investigators at Beth Israel Deaconess Medical Center (Boston, MA, USA) found that the microRNA miR-147b initiated a reversible state of tolerance to the epidermal growth factor receptor (EGFR) inhibitor osimertinib in non-small-cell lung cancer. Osimertinib is a medication used to treat non-small-cell lung carcinomas with the specific EGFR mutation. It is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor.

The investigators reported in the April 8, 2019, online edition of the journal Nature Metabolism that using miRNA-seq analysis, they determined that miR-147b was the most upregulated microRNA in osimertinib-tolerant and EGFR-mutated lung cancer cells. Whole-transcriptome analysis of single-cell-derived clones revealed a link between osimertinib tolerance and pseudohypoxia responses irrespective of oxygen levels.

Further metabolomics and genetic studies demonstrated that osimertinib tolerance was driven by miR-147b-mediated repression of VHL (von Hippel-Lindau tumor suppressor) and succinate dehydrogenase, which are linked to the tricarboxylic acid energy-producing cycle and pseudohypoxia pathways. Finally, pretreatment with a miR-147b inhibitor delayed osimertinib-associated drug tolerance in patient-derived three-dimensional structures.

"These results were a surprise and represent a total novel finding in the area," said senior author Dr. Frank J. Slack, professor of medical research at Beth Israel Deaconess Medical Center. "In this study, we discovered that a microRNA known as miR-147b is a critical mediator of resistance among a subpopulation of tumor cells that adopt a tolerance strategy to defend against EGFR-based anticancer treatments. We are currently testing the idea of targeting this new pathway as a therapy in clinically relevant mouse models of EGFR-mutant lung cancer."

Related Links:
Beth Israel Deaconess Medical Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.