We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bioprinting Studies How Cancer Cells Grow and Spread

By LabMedica International staff writers
Posted on 26 Feb 2019
Novel use of a three-dimensional (3D) bioprinting technique has created new ways to study how cancer cells grow and spread.

Investigators at the University of Minnesota (Minneapolis/St. More...
Paul, USA) have developed three-dimensional bioprinting techniques that have been adapted to build tumor constructs via precise placement of living cells, functional biomaterials, and programmable release capsules.

Three-dimensional bioprinting combines cells, growth factors, and biomaterials to fabricate biomedical constructs that maximally imitate natural tissue characteristics. Generally, three-dimensional bioprinting utilizes the layer-by-layer method to deposit biological materials to create tissue-like structures. Emerging innovations include bioprinting of cells or extracellular matrix deposited into a three-dimensional gel layer by layer to produce the desired tissue or organ.

The technique described in the January 21, 2019, online edition of the journal Advanced Materials enabled the spatiotemporal control of signaling molecular gradients, thereby dynamically modulating cellular behaviors at a local level.

Vascularized tumor models were created to mimic key steps of cancer dissemination (invasion, intravasation, and angiogenesis), based on guided migration of tumor cells and endothelial cells in the context of stromal cells and growth factors. In addition, the investigators described the benefits of using these metastatic models for drug screening by evaluating the anticancer efficacy of immunotoxins.

“This model is more consistent with what the body is like,” said senior author Dr. Angela Panoskaltsis-Mortari, professor of pediatrics at the University of Minnesota, “and, therefore, studying the effects of drugs with human cells at this level makes the results more meaningful and predictive of what will happen in the body.”

Related Links:
University of Minnesota


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.