Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Melanoma Cells Secrete Factors to Promote Tumor Growth

By LabMedica International staff writers
Posted on 12 Feb 2019
A team of British researchers found that high Myosin II activity in invasive melanoma cells induced reprogramming of innate immune responses in the local microenvironment to support tumor growth.

Myosin II (also known as conventional myosin) is the myosin type responsible for producing contraction in muscle cells, and ROCK (Rho-associated protein kinase)-Myosin II was found to drive rounded-amoeboid migration in cancer cells during metastatic dissemination.

Following up this line of research, investigators at Queen Mary University of London (United Kingdom) reported in the January 31, 2019, online edition of the journal Cell that analysis of human melanoma biopsies revealed that amoeboid melanoma cells with high Myosin II activity were predominant in the invasive fronts of primary tumors in proximity to tumor-associated macrophages and vessels. More...
Proteomic analysis showed that ROCK-Myosin II activity in amoeboid cancer cells controlled an immunomodulatory secretome – comprising all the factors secreted by the cell into the extracellular space - enabling the recruitment of monocytes and their differentiation into tumor-promoting macrophages. Both amoeboid cancer cells and their associated macrophages supported an abnormal system of blood vessels, which ultimately facilitated tumor progression.

Mechanistically, amoeboid cancer cells maintained their behavior via ROCK-Myosin II-driven interleukin 1 alpha (IL-1alpha) secretion and NF-kappaB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation.

In addition, using an array of tumor models, the investigators demonstrated that high Myosin II activity in tumor cells reprogrammed the innate immune microenvironment to support tumor growth.

"This study highlights how cancer cells interact with and influence their surrounding environment to grow and spread. Developing treatments that target the chemicals that alter the immune system could help to prevent the spread of the disease," said senior author Dr. Victoria Sanz-Moreno, professor of cancer cell biology at Queen Mary University of London. "We are excited to find out whether inhibitor drugs could be used in combination with other targeted therapies. By identifying effective treatment combinations, we hope that in the future Myosin II and interleukin 1alpha inhibitors could be used to improve patient outcomes and reduce the risk of melanoma coming back."

Related Links:
Queen Mary University of London


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Procalcitonin Test
LIAISON B•R•A•H•M•S PCT II GEN
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.