We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Gene Therapy Treatment Uses Microparticles to Deliver DNA or RNA

By LabMedica International staff writers
Posted on 18 Dec 2018
A novel gene therapy approach for correcting hereditary blood disorders is based on the use of megakaryocytic microparticles (MkMPs) to deliver plasmid DNAs and small RNAs to hematopoietic stem and progenitor cells (HSPCs).

HSPCs are important target cells for gene therapy applications. More...
However, currently genetic modifications of HSPCs rely on viral vectors, which is a delivery method with considerable risk of side effects to the patient.

To replace the viral delivery method, investigators at the University of Delaware (Newark, USA) developed a system based on megakaryocytic microparticles (MPs) for targeted delivery of plasmid DNA (pDNA) and small RNAs to HSPCs. Megakaryocytes (Mks) are large polyploidy cells derived from HSPCs upon thrombopoietin (Tpo) stimulation, which, upon maturation and fragmentation, give rise to circulating platelets, as well as to MkMPs, which are the most abundant MPs in circulation. The investigators had shown previously that, in vitro, Mks also shed MkMPs. They had also demonstrated that, in vitro, MkMPs specifically targeted and were taken up by human HSPCs through fusion and/or endocytosis following specific receptor recognition.

The investigators reported in the November 7, 2018, online edition of the journal Science Advances that with an optimized electroporation protocol, an average of 4200 plasmid copies per MP could be loaded into MP, thus enabling effective delivery of green fluorescent protein (GFP)-encoding pDNA to HSPCs and HSPC nuclei, with up to 81% nuclei containing pDNA. Effective functional small interfering RNA (siRNA) and microRNA (miRNA) delivery were also demonstrated.

The investigators also found that human MkMPs could target mouse HSPCs in vivo to induce de novo platelet biogenesis in a simple murine model, thus demonstrating in vivo target specificity and efficacy even when using a cross-species model. Furthermore, patient-specific or generic megakaryocytic MPs could be readily generated and stored frozen, which suggests that this system has great potential for therapeutic applications targeting HSPCs.

"A lot of researchers are trying to deliver DNA, nucleic acids, or drugs to target hematopoietic stem cells," said senior author Dr. Eleftherios T. Papoutsakis, professor of chemical and biomolecular engineering at the University of Delaware. "This is the right cell to target because it gives rise to all blood cells."

Related Links:
University of Delaware


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.