We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Deeply Penetrating Nanoparticles Designed to Treat Osteoarthritis

By LabMedica International staff writers
Posted on 12 Dec 2018
A novel nanoparticle-based drug transport system designed to treat osteoarthritis delivers the anabolic growth factor IGF-1 (insulin-like growth factor 1) directly to injured chondrocytes, which are located deep within a dense layer of cartilage tissue.

Osteoarthritis is a debilitating joint disease for which there are no disease-modifying therapies. More...
Several drugs have failed clinical trials due to inefficient and inadequate delivery to target cells. Anabolic growth factors are one class of such drugs that could be disease-modifying if delivered directly to chondrocytes, which reside deep within dense, anionic cartilage tissue.

To overcome this biological barrier, investigators at the Massachusetts Institute of Technology (Cambridge, USA) conjugated IGF-1 to a cationic nanocarrier for targeted delivery to chondrocytes and retention within joint cartilage after direct intra-articular injection. IGF-1 is an anabolic growth factor that promotes chondrocyte survival, proliferation, and biosynthesis of cartilage matrix macromolecules. It also shows anti-inflammatory effects in cytokine-challenged cartilage tissue. Because of these properties, IGF-1 has garnered considerable interest as a potential disease-modifying drug.

The nanocarriers were prepared from repetitively branched molecules known as dendrimers. Poly(amidoamide), or PAMAM, dendrimers were utilized for their tertiary amine groups at the branching points within the dendrimer. Metal ions were introduced to an aqueous dendrimer solution and the metal ions formed a complex with the lone pair of electrons present at the tertiary amines.

The nanocarriers were end functionalized with variable molar ratios of poly(ethylene glycol) (PEG) to control surface charge. PEG provided reversible electrostatic interactions with anionic cartilage tissue to improve tissue binding, penetration, and residence time. From a small family of variably PEGylated dendrimers, an optimal formulation showing 70% uptake into cartilage tissue and 100% cell viability was selected.

The investigators reported in the November 28, 2018, online edition of the journal Science Translational Medicine that when conjugated to IGF-1, the dendrimer nanocarriers penetrated bovine cartilage of human thickness within two days and enhanced therapeutic IGF-1 joint residence time in rat knees by 10-fold for up to 30 days. In a surgical model of rat osteoarthritis, a single injection of dendrimer–IGF-1 rescued cartilage and bone more effectively than free IGF-1. Cartilage in injured joints treated with the nanoparticle-drug combination was far less damaged than cartilage in untreated joints or joints treated with IGF-1 alone. The joints also showed reductions in joint inflammation and bone spur formation.

"This is a way to get directly to the cells that are experiencing the damage, and introduce different kinds of therapeutics that might change their behavior," said senior author Dr. Paula Hammond, professor of chemical engineering at the Massachusetts Institute of Technology.

Related Links:
Massachusetts Institute of Technology


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Rapid Flu Test
Influenza A&B Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.