We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Method Eliminates Unwanted Neurons from Cultures of Kidney Organoids

By LabMedica International staff writers
Posted on 26 Nov 2018
A method has been reported that is able to eliminate more than 90% of unwanted neurons from cultures of stem cell-generated kidney cell organoids.

Kidney organoids derived from human pluripotent stem cells have great utility for investigating organ development and disease mechanisms and, potentially, as a replacement tissue source. More...
However, it is not clear how closely organoids derived using current protocols replicate the adult human kidney.

To clarify this issue, investigators at Washington University (St. Louis, MO, USA) compared two directed differentiation protocols - starting from embryonic stem cells or from induced pluripotent stem cells - using single-cell transcriptomic analysis of 83,130 cells from 65 organoids. These results were matched with single-cell transcriptomes of fetal and adult kidney cells.

Results published in the November 15, 2018, online edition of the journal Cell Stem Cell revealed that both protocols generated a diverse range of kidney cells with differing ratios, but organoid-derived cell types were immature, and 10% to 20% of cells were not kidney cells.

The investigators found that brain-derived neurotrophic factor (BDNF) and its receptor neurotrophic tyrosine kinase, receptor, type 2 (NTRK2) were expressed in the neuronal lineage during organoid differentiation. BDNF is a protein that acts on certain neurons of the central nervous system and the peripheral nervous system, helping to support the survival of existing neurons, and encourage the growth and differentiation of new neurons and synapses. The TrkB receptor is encoded by the NTRK2 gene and is a member of a receptor family of tyrosine kinases. The activation of the BDNF-TrkB pathway is important in the development of short-term memory and the growth of neurons.

Further analysis revealed that by inhibiting the BDNF-NTRK2 pathway, it was possible to improve organoid formation by reducing neurons by 90% without affecting kidney differentiation.

“There is a lot of enthusiasm for growing organoids as models for diseases that affect people,” said senior author Dr. Benjamin D. Humphreys, professor of nephrology at Washington University. “But scientists have not fully appreciated that some of the cells that make up those organoids may not mimic what we would find in people. The good news is that with a simple intervention, we could block most of the rogue cells from growing. This should really accelerate our progress in making organoids better models for human kidney disease and drug discovery, and the same technique could be applied to targeting rogue cells in other organoids.”

“Progress to develop better treatments for kidney disease is slow because we lack good models,” said Dr. Humphreys. “We rely on mice and rats, and they are not little humans. There are many examples of drugs that have done magically well at slowing or curing kidney disease in rodents but failed in clinical trials. So, the notion of channeling human stem cells to organize into a kidney-like structure is tremendously exciting because many of us feel that this potentially eliminates that "lost in translation" aspect of going from a mouse to a human.”

Related Links:
Washington University


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.