We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Linked Antibodies Provide Universal Protection from Influenza Infection

By LabMedica International staff writers
Posted on 22 Nov 2018
A potential universal vaccine that would protect individuals from infection by all strains of influenza virus is based on multidomain antibodies that were fabricated by combining selected llama single-domain antibodies.

Vaccines remain essential for influenza prevention, but their efficacy is substantially reduced in the elderly, who are at increased risk of influenza-related complications. More...
Annual selection of vaccine strains presents many challenges, and a poor match with circulating viruses can result in limited effectiveness. Moreover, most vaccine-induced antibodies are directed against the highly variable head region of hemagglutinin (HA) and are strain specific.

In addition to the normal antibodies found in other mammals, llamas produce a unique type of antibodies, which lack the light chain. These so-called heavy-chain antibodies, which have been shown to be just as specific as regular antibodies, are being used to develop single-domain antibodies with potential pharmaceutical applications. In this regard, investigators at the Scripps Research Institute (La Jolla, CA, USA) and their collaborators extended the potential usefulness of these antibodies by combining several into a single molecule – a multidomain antibody.

For this study two llama antibodies against influenza A and two against influenza B were linked to create a multidomain antibody. The investigators reported in the November 2, 2018, issue of the journal Science that multidomain antibody MD3606 protected mice against influenza A and B infection when administered by nasal inhalation or when it was expressed from an engineered gene administered via a recombinant adeno-associated virus vector. Crystal and single-particle electron microscopy structures of these antibodies with hemagglutinins from influenza A and B viruses revealed binding to highly conserved epitopes.

The investigators concluded that they had devised an alternative strategy for long-lasting protection in which single-domain antibodies with influenza A or B reactivity were linked together into a multidomain antibody and expressed at the nasopharyngeal mucosa through the intranasal administration of a recombinant adeno-associated virus (AAV) vector encoding the multidomain antibody transgene.

Related Links:
Scripps Research Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Procalcitonin Test
LIAISON B•R•A•H•M•S PCT II GEN
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.