We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Biodegradable Nanoscaffolds Improve Chances for Stem Cell Therapies

By LabMedica International staff writers
Posted on 15 Nov 2018
The therapeutic potential of biodegradable nanoscaffolds made from manganese dioxide (MnO2) for advanced stem cell transplantation and neural tissue engineering was discussed favorably in a recent paper.

Stem cell transplantation, as a promising treatment for central nervous system diseases, has been hampered by crucial issues such as a low cell survival rate, incomplete differentiation, and limited neurite outgrowth in vivo. More...
Inorganic and carbon-based nanoscaffolds designed to support and improve stem cell growth have been handicapped by their non-biodegradability and restricted biocompatibility, thereby delaying their wide clinical applications. On the contrary, MnO2 nanomaterials have proven to be biodegradable in other bio-applications such as cancer therapies, with MRI active Mn2+ ions as a degradation product.

Investigators at Rutgers University (New Brunswick, NJ, USA) designed nanoscaffolds that mimicked the natural tissue microenvironment to deliver physical and soluble cues. They took advantage of the biodegradability of MnO2 to incorporate its unique physiochemical properties into nano-sized structures for stem cell-based tissue engineering. The result, as described in the August 8, 2018, online edition of the journal Nature Communications was MnO2 nanomaterials-based three-dimensional hybrid nanoscaffolds that better regulated stem cell adhesion, differentiation into neurons, and neurite outgrowth in vitro and enabled enhanced stem cell transplantation benefits in vivo.

These biodegradable MnO2 nanoscaffolds could potentially serve as powerful tools for improving stem cell transplantation and advancing stem cell therapy.

"It has been a major challenge to develop a reliable therapeutic method for treating central nervous system diseases and injuries," said senior author Dr. KiBum Lee, professor of chemistry and chemical biology at Rutgers University. "Our enhanced stem cell transplantation approach is an innovative potential solution."

Related Links:
Rutgers University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Parainfluenza Virus Test
PARAINFLUENZA ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.