We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Gene Mutation Reduces Glucose Uptake and Premature Mortality

By LabMedica International staff writers
Posted on 25 Oct 2018
A loss-of-function mutation in a gene in the digestive tract reduces glucose uptake from ingested food, which helps to protect the individual from diabetes, obesity, heart failure, and premature mortality from these disorders.

Loss-of-function mutations in the SGLT1 (sodium/glucose co-transporter-1) gene result in a rare glucose/galactose malabsorption disorder and neonatal death if untreated. More...
In the general population, effects related to intestinal glucose absorption have not been well characterized.

To shed light on these effects, investigators at Harvard University Medical School (Boston, MA, USA) conducted experiments designed to identify functional SGLT1 gene variants and characterize their clinical consequences.

Whole exome sequencing was performed on 8,478 participants in the ARIC (Atherosclerosis Risk in Communities) study. This study was a 25-year-long observational trial of atherosclerosis and cardiovascular risk factors in people living in four communities in the USA. In addition to genetic testing, the association of functional, nonsynonymous substitutions in SGLT1 with two-hour oral glucose tolerance test results was determined.

Results published in the October 9, 2018, issue of the Journal of the American College of Cardiology revealed that approximately 6% of the ARIC participants carried a mutation in SGLT-1 that caused limited impairment of glucose absorption. Individuals with this mutation had a lower incidence of type II diabetes, were less obese, had a lower incidence of heart failure, and had a lower mortality rate when compared to those without the mutation.

The investigators believe that reduced intestinal glucose uptake induced by the mutation may protect the individual from long-term cardiovascular and metabolic disorders, providing support for development of therapies that will target SGLT1 function to prevent and treat metabolic conditions.

"We are excited about this study because it helps clarify the link between what we eat, what we absorb, and our risk for disease. Knowing this opens the door to improved therapies for cardio-metabolic disease," said senior author Dr. Scott D. Solomon, professor of medicine at Harvard University Medical School. "This study is the first to fully evaluate the link between mutations in the gene mainly responsible for absorbing glucose in the gut--SGLT-1, or sodium glucose co-transporter-1--and cardio-metabolic disease."

Related Links:
Harvard University Medical School


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.