Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Screening Technique Finds Endothelial Cells Targeted by Nanoparticles

By LabMedica International staff writers
Posted on 18 Oct 2018
A recently developed technique allows researchers to identify lipid nanoparticles that preferentially target endothelial cells – rather than liver cells – for transport of the components of the CRISPR/Cas9 gene-editing tool.

Nanoparticle-mediated delivery of siRNA to hepatocytes has been used to treat disease in humans. More...
However, systemically delivering RNA drugs to tissues other than the liver has remained an important challenge, primarily because there is no high-throughput method to identify nanoparticles that deliver functional mRNA to cells in vivo.

To increase the number of nanoparticles that could be studied in vivo, investigators at the Georgia Institute of Technology (Atlanta, USA) designed a high-throughput method for which they coined the name FIND (Fast Identification of Nanoparticle Delivery). This method is capable of quantifying how more than 100 lipid nanoparticles (LNPs) deliver mRNA that is translated into functional protein.

To prepare the nanoparticles nucleic acids (mRNA, DNA barcodes, siRNA, and sgRNA) were diluted in citrate buffer while lipid-amine compounds, alkyl-tailed PEG, cholesterol, and helper lipids were diluted in ethanol. The nanoparticles were generated by combining the citrate and ethanol phases by syringes in a microfluidic device.

The FIND technique also introduced a red-colored tracer protein (Cre) into cells. This was done by co-delivering Cas9 mRNA and single-guide RNA, which induced endothelial cell gene editing.

The investigators reported in the October 1, 2018, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America that they had measured how more than 250 LNPs were able to deliver mRNA to multiple cell types in vivo and identified two LNPs that efficiently delivered siRNA, single-guide RNA (sgRNA), and mRNA to endothelial cells. One of the nanoparticles delivered Cas9 mRNA and sgRNA to splenic endothelial cells as efficiently as hepatocytes, distinguishing it from LNPs that delivered Cas9 mRNA and sgRNA to hepatocytes more than other cell types.

"We hope to take projects that would ordinarily require years and complete several of them within the next 12 months," said senior author Dr. James E. Dahlman, assistant professor of biomedical engineering at the Georgia Institute of Technology. "FIND could be used to carry all sorts of nucleic acid drugs into cells. That could include small RNAs, large RNAs, small DNAs and large DNAs - many different types of genetic drugs that are now being developed in research labs."

Related Links:
Georgia Institute of Technology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Rapid Flu Test
Influenza A&B Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.