We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Molecular Scaffolds Promise Drug Synthesis in Breast Cancer Treatment

By LabMedica International staff writers
Posted on 16 Oct 2018
A recently developed class of molecular scaffolds for treatment of breast cancer promises to facilitate the synthesis of drugs capable of degrading or inhibiting estrogen receptors (ERs).

Drug developers have been searching for compounds with selective estrogen receptor degrader (SERD) and ER antagonistic properties for many years. More...
A SERD is a type of drug that binds to the ER and, in the process of doing so, causes the ER to be degraded and thus downregulated. They are used to treat estrogen receptor-sensitive or progesterone receptor-sensitive breast cancer, along with older classes of drugs like selective estrogen receptor modulators (SERMs) and aromatase inhibitors. To date, the only SERD approved for marketing in the USA has been Fulvestrant, which works by binding to the ER and destabilizing it, causing the cell's normal protein degradation processes to destroy it.

Investigators at the Stevens Institute of Technology (Hoboken, NJ, USA) reported in the August 9, 2018, issue of the journal ACS Medicinal Chemistry Letters that they had developed new classes of scaffolds that possess SERD and ER antagonistic properties. These novel SERDs potently inhibited MCF-7 breast cancer cell proliferation and the expression of ER target genes, and their efficacy was comparable to Fulvestrant.

Unlike Fulvestrant, the modular protein-targeted chimera (PROTAC)-type design of these novel SERDs is expected to allow easy diversification into a library of analogs to further fine-tune their pharmacokinetic properties including oral availability. In addition, this will tend to expand the pool of currently available PROTAC-type scaffolds that could be beneficial for targeted degradation of various other therapeutically important proteins.

“The unique benefit of our compounds is that this is a fundamentally different type of structure that was previously not known to degrade or inhibit estrogen receptors,” said senior author Dr. Abhishek Sharma, professor of chemistry at the Stevens Institute of Technology. “It is not a tweak of an existing drug; it works in a completely different way. We consider these results to be very promising. This is a novel molecular structure, and several analogs produced excellent early activity."

Related Links:
Stevens Institute of Technology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.