We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Polysome Screen Identifies Cancer Related MicroRNAs

By LabMedica International staff writers
Posted on 04 Sep 2018
An international research team has developed a polysome-based method for detecting microRNAs (miRNAs) that act to promote or sustain growth of malignant mesothelioma and other types of cancer.

MicroRNAs are short RNA molecules about 22 nucleotides in length. More...
Essentially, miRNAs specifically target certain messenger RNAs (mRNAs) to prevent them from coding for a specific protein. The expression of miRNAs in cancer has been widely studied and has allowed this activity to be classified as oncomir (also oncomiR) or oncosuppressor.

The dysregulation of oncomirs has been associated with specific cancer forming events such as malignant transformation and metastasis. Some oncomir genes are oncogenes, in that overexpression of the gene leads to cancerous growth. Other oncomir genes are tumor suppressors in a normal cell, so that under expression of the gene leads to cancerous growth.

In order to identify biologically active oncomirs, investigators at the National Institute of Molecular Genetics (Milan, Italy) and their collaborators in Italy and the United States developed a screen for miRNAs acting on the polysomes of malignant mesothelioma (MPM) cells. A polysome (or polyribosome) is a complex comprising an mRNA molecule and two or more ribosomes that act to translate mRNA instructions into polypeptides.

They investigators reported in the August 2, 2018, online edition of the journal Cancer Research that only a small percentage of expressed miRNAs physically associated with polysomes. On polysomes, they identified miRNAs already characterized in MPM, as well as novel ones like miR-24-3p, which acted as a pro-migratory miRNA in all cancer cells tested. They found that miR-24-3p positively regulated the activity of the enzyme Rho-GTP, a kinase involved in regulating the shape and movement of cells by acting on the cytoskeleton. In contrast, inhibition of miR-24-3p reduced growth in MPM cells.

Among the specific targets of miR-24-3p was cingulin, a tight junction protein that inhibited Rho-GTP activity. Overexpression of miR-24-3p was found to only partially inhibit cingulin mRNA but to completely eliminate cingulin protein, confirming its action via translational repression. This finding confirmed that miR-24-3p was an oncomir, and suggested that identification of polysome-associated miRNAs efficiently sorted out biologically active miRNAs from inactive ones.

“We have identified a novel approach for identifying relevant miRNA in cancer biology,” said senior author Dr. Stefano Biffo, professor of cell biology at the University of Milan (Italy) and group leader at the National Institute of Molecular Genetics. “By examining the polyribosomes where translation occurs, this "focused" search has allowed us to identify that miR-24-3p (a particular miRna) expression is relevant to cancer progression and metastasis.”

Related Links:
National Institute of Molecular Genetics
University of Milan


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Procalcitonin Test
LIAISON B•R•A•H•M•S PCT II GEN
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.