We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Spider Silk Microparticle System Engineered for Anticancer Drugs

By LabMedica International staff writers
Posted on 25 Jun 2018
Engineered spider silk microparticles underlie a novel transport system for the delivery of immunotherapeutic drugs to critical stimulatory sites in the immune system.

The generation of strong T-cell immunity is one of the main challenges for the development of successful vaccines against cancer and major infectious diseases. More...
To accomplish this task vaccine peptides must be protected from rapid degradation in the body and should be delivered to the center of the lymph node cells, thereby considerably increasing T-lymphocyte immune responses.

To fulfill these criteria, investigators at the University of Geneva (Switzerland) and collaborators from several German research institutes engineered spider silk microparticles as the basis for a delivery system for peptide-based vaccination. Spider silk is a lightweight, biocompatible, non-toxic material that is highly resistant to degradation from light and heat. To prepare the microparticles, the recombinant spider silk protein eADF4(C16) was fused to the antigenic peptide from ovalbumin, either without linker or with a cathepsin cleavable peptide linker.

The investigators reported in the July 2018 issue of the journal Biomaterials that particles prepared from the hybrid proteins were taken up by dendritic cells, which are essential for T-cell priming, and successfully activated cytotoxic T-cells, without signs of immunotoxicity or unspecific immunostimulatory activity. Upon subcutaneous injection in mice, the particles were taken up by dendritic cells and accumulated in the lymph nodes, where immune responses are generated.

"To develop immunotherapeutic drugs effective against cancer, it is essential to generate a significant response of T-lymphocytes, said senior author Dr. Carole Bourquin, professor of pharmaceutical sciences at the University of Geneva.

"As the current vaccines have only limited action on T-cells, it is crucial to develop other vaccination procedures to overcome this issue. Our study has proved the validity of our technique. We have demonstrated the effectiveness of a new vaccination strategy that is extremely stable, easy to manufacture and easily customizable."

Related Links:
University of Geneva


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Blood Ammonia Test Analyzer
DRI-CHEM NX10N
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.