We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Immunosuppressing Microparticles Prevents Rejection of Transplanted Cells

By LabMedica International staff writers
Posted on 20 Jun 2018
A novel potential treatment approach for type I diabetes is based on transplantation of insulin-producing pancreatic islet cells together with synthetic hydrogel microparticles that contain the immune system modulator protein Fas ligand (FasL).

Fas ligand (FasL or CD95L) is a type-II transmembrane protein that belongs to the tumor necrosis factor (TNF) family. More...
Binding of FasL to its receptor induces apoptosis. Fas ligand/receptor interactions play an important role in the regulation of the immune system and the progression of cancer.

Islet transplantation is a promising therapy for type I diabetes. However, chronic immunosuppression to control rejection of allogeneic islets induces morbidities and impairs islet function. T effector cells are responsible for islet allograft rejection and express Fas death receptors following activation, becoming sensitive to Fas-mediated apoptosis.

In order to prolong survival of allogeneic islet grafts in diabetic mice, investigators at the University of Louisville (KY, USA) and the Georgia Institute of Technology (Atlanta, USA) harvested islets from cadavers and simply mixed them with hydrogel particles in the operating room for delivery to the diabetic mice. The islets were not modified and the immune system was not suppressed. The polymer hydrogel particles were about 150 microns in diameter, about the same size as the islet cells. The particles had been designed to capture recombinant FasL protein on their surface, where the protein could be "seen" by the effector cells.

Results published in the June 4, 2018, online edition of the journal Nature Materials revealed that this localized immunomodulation approach using microgels presenting an apoptotic form of the Fas ligand with streptavidin (SA-FasL) resulted in prolonged survival of allogeneic islet grafts in diabetic mice. A short course of rapamycin treatment boosted the immunomodulatory efficacy of SA-FasL microgels, resulting in acceptance and function of allografts for a period of over 200 days. Following treatment, the animals functioned normally and were cured from diabetes while retaining full immune system functionality.

“We have been able to demonstrate that we can create a biomaterial that interrupts the body’s desire to reject the transplant, while not requiring the recipient to remain on continuous standard immunosuppression,” said senior author Dr. Haval Shirwan, professor of microbiology and immunology at the University of Louisville. “We anticipate that further study will demonstrate potential use for many transplant types, including bone marrow and solid organs.”

Related Links:
University of Louisville
Georgia Institute of Technology


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Blood Ammonia Test Analyzer
DRI-CHEM NX10N
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.