We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Inhibiting Fibronectin Polymerization Reduces Injury to Cardiac Muscle

By LabMedica International staff writers
Posted on 24 Apr 2018
Working with a mouse model of human heart disease, researchers showed that interfering with fibronectin (FN) polymerization or its genetic deletion in fibroblasts would attenuate cardiac myofibroblasts (MF), fibrosis, and improve cardiac function following heart attack related injury.

Fibronectin is a high-molecular weight glycoprotein of the extracellular matrix that binds to integrin receptor proteins. More...
Similar to integrins, fibronectin binds extracellular matrix components such as collagen, fibrin, and heparan sulfate proteoglycans. Fibronectin exists as a protein dimer, consisting of two nearly identical monomers linked by a pair of disulfide bonds. The fibronectin protein is produced from a single gene, but alternative splicing of its pre-mRNA leads to the creation of several isoforms. Fibronectin plays a major role in cell adhesion, growth, migration, and differentiation, and it is important for processes such as wound healing and embryonic development. Altered fibronectin expression, degradation, and organization have been associated with a number of pathologies, including cancer and fibrosis.

Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MF) following cardiac injury. To better understand the role of FN polymerization, investigators at Cincinnati Children's Hospital Medical Center (OH, USA) used the synthetic polymerization inhibitor peptide pUR4 to assess the impact of blocking FN polymerization on pathologic cellular features such as proliferation, migration, extracellular matrix (ECM) deposition, and associated mechanisms.

To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wildtype (WT) mice received daily intraperitoneal injections of either pUR4 or a control peptide (III-11C) immediately after cardiac surgery, for seven consecutive days. Mice were analyzed seven days post-injury to assess myofibroblast markers and inflammatory cell infiltration, or four weeks post-injury, to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Further, inducible, fibroblast-restricted, FN gene ablated mice were utilized to evaluate cell specificity of FN expression and polymerization in the heart.

Results published in the April 13, 2018, online edition of the journal Circulation revealed that pUR4 administration on activated MF reduced FN and collagen deposition into the ECM and attenuated cell proliferation, likely mediated through decreased c-myc signaling. The pUR4 peptide also enhanced fibroblast migration accompanied by increased beta-1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase (FAK) protein. Daily administration of pUR4 in vivo for seven days following injury significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly lessened myocardial dysfunction, pathologic cardiac remodeling, and fibrosis up to four weeks post-injury. Finally, inducible ablation of FN in fibroblasts post-injury resulted in significant functional cardio-protection with reduced hypertrophy and fibrosis.

"Our data are a strong proof of principle and the first to show that inhibiting fibronectin polymerization preserves heart function, reduces left ventricle remodeling and limits formation of fibrotic connective tissue," said senior author Dr. Burns Blaxall, director of translational research in the heart institute at Cincinnati Children's Hospital Medical Center.

Related Links:
Cincinnati Children's Hospital Medical Center


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.