We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Smart Release Skin Patch Corrects Type II Diabetes in Model

By LabMedica International staff writers
Posted on 10 Jan 2018
A novel approach for treating type II diabetes is based on microneedle-array patches that are loaded with dual mineralized protein/peptide particles that release the hormone exendin-4 in response to elevated blood sugar levels.

Exendin-4 (Ex4) is a hormone first isolated in 1992 from the saliva of the Gila monster (Heloderma suspectum). More...
It is a 39-amino-acid peptide, which induces secretion of insulin with glucoregulatory effects. Ex4 increases insulin secretion in response to eating meals; the result is the release of a higher, more appropriate amount of insulin that helps lower the rise in blood sugar from eating. Once blood sugar levels decrease closer to normal values, the pancreatic response to produce insulin is reduced. Synthetic Ex4 (Exenatide) was approved by the [U.S.] Food and Drug Administration in 2005 for patients whose diabetes was not well controlled by other oral medication.

Investigators at the [U.S.] National Institute of Biomedical Imaging and Bioengineering (Bethesda, MD, USA) recently described a novel way to deliver Ex4 as part of a bimodal therapeutic approach to treat type II diabetes. The investigators immobilized and stabilized Ex4 by integrating it into mineral particles composed of calcium phosphate. A second drug compound, the enzyme glucose oxidase (GOx), was similarly immobilized in particles composed of copper phosphate. Both mineral complexes were loaded into a patch containing alginate microneedles.

The microneedle patch concept was tested in a diabetes mouse model. After application, the needles released the mineral complexes through the skin. When blood sugar was elevated beyond a precise point, reaction with copper phosphate and glucose oxidase produced slight acidity, which caused calcium phosphate to release some Ex4. Rising glucose levels triggered the release of Ex4, which induced insulin secretion to reduce the glucose level, which in turn reduced and stopped Ex4 release. As an added bonus, integration of mineralized particles enhanced the mechanical strength of the alginate-based microneedles by crosslinking to facilitate skin penetration.

Results published in the November 26, 2017, online edition of the journal Nature Communications revealed that a patch about half an inch square contained sufficient drug to control blood sugar levels in mice for a week.

“That is why we call it responsive, or smart release,” said senior author Dr. Xiaoyuan Chen, senior investigator in the laboratory of molecular imaging and nanomedicine at the National Institutes of Health. “Most current approaches involve constant release. Our approach creates a wave of fast release when needed and then slows or even stops the release when the glucose level is stable. Diabetes is a very serious disease and affects a lot of people. Everybody is looking for a long-acting formula.”

Related Links:
National Institute of Biomedical Imaging and Bioengineering


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.