We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Ferrite Nanoparticles for Hyperthermic Cancer Therapeutics

By LabMedica International staff writers
Posted on 08 Nov 2017
A novel type of nontoxic magnetic nanoparticles shows potential for treating malignant tumor cells through controlled hyperthermia.

For hyperthermia to be used under clinical conditions for cancer therapeutics the temperature regulation needs to be precise and accurately controllable. More...
In the case of the metal nanoparticles used for such activities, a high coercivity is a prerequisite in order to couple more energy in a single heating cycle for efficient and faster differential heating. Coercivity is a measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming demagnetized.

Ferromagnetic materials with high coercivity are called magnetically hard materials, and are used to make permanent magnets. Materials with low coercivity are said to be magnetically soft. The latter are used in transformer and inductor cores, recording heads, microwave devices, and magnetic shielding.

Chemically stable Co–Zn ferrite nanoparticles have typically not been used in self-regulating hyperthermia temperature applications to date due to their low Curie temperature (the temperature at which certain materials lose their permanent magnetic properties), usually accompanied by a poor coercivity.

Tumor cells can be attacked and killed by hyperthermic nanoparticles without affecting normal tissue if the temperature of the particles can be controlled accurately within a range of 42°C to 45°C. To accomplish this task, investigators at the University of Surrey (United Kingdom) developed novel Cr3+ substituted Co–Zn ferrite nanoparticles, whose Curie temperature was 45.7 °C. Under clinically acceptable magnetic field conditions, the temperature of these nanoparticle suspensions could be self-regulated to 44.0°C.

The investigators reported in the October 7, 2017, issue of the journal Nanoscale that evaluation of the in vitro cytotoxicity of the nanoparticles showed a low toxicity, which indicated that this novel set of magnetic nanoparticles should be appropriate for use in self-regulating hyperthermia therapeutics.

Senior author Dr. Ravi Silva, head of the advanced technology institute at the University of Surrey, said, "This could potentially be a game changer in the way we treat people who have cancer. If we can keep cancer treatment sat at a temperature level high enough to kill the cancer, while low enough to stop harming healthy tissue, it will prevent some of the serious side effects of vital treatment. It is a very exciting development which, once again, shows that the University of Surrey research is at the forefront of nanotechnologies - whether in the field of energy materials or, in this case, healthcare."

Related Links:
University of Surrey


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Rapid Flu Test
Influenza A&B Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.