We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Loss of p53 Promotes Survival of Cancer Stem Cells

By LabMedica International staff writers
Posted on 26 Oct 2017
Cancer researchers have found that the cellular cleansing process known as mitophagy is linked to the development and progression of liver cancer.

Mitophagy is the selective degradation of mitochondria by autophagy. More...
It often occurs to defective mitochondria following damage or stress. In addition to the selective removal of damaged mitochondria, mitophagy is also required to adjust mitochondrial numbers to changing cellular metabolic needs, for steady-state mitochondrial turnover, and during certain cellular developmental stages, such as during cellular differentiation of red blood cells.

Investigators at the University of Southern California (Los Angeles, USA) reported in the October 12, 2017, online edition of the journal Molecular Cell that mitophagy promoted the maintenance of hepatic cancer stem cells (CSCs) through the loss of the tumor suppressor protein p53, which was closely associated with the mitochondria.

When mitophagy was inhibited, the p53 protein on mitochondria was phosphorylated at serine-392 by the enzyme PINK1, a kinase associated with mitophagy. The phosphorylated p53 was then translocated into the nucleus, where it bound to the NANOG promoter. This binding prevented the OCT4 and SOX2 transcription factors from activating the expression of NANOG, a transcription factor critical for maintaining the stem cell properties and the self-renewal ability of CSCs, resulting in the reduction of hepatic CSC populations.

"Liver cancer is difficult to treat, and most patients who are diagnosed with it will die within a five-year period," said senior author Dr. Jing-Hsiung James Ou, professor of molecular microbiology and immunology at the University of Southern California. "My team has identified how liver cancer stem cells are maintained. Without these "seeds of cancer," liver tumors would shrink and eventually disappear. Now that we understand the molecular process, we will be able to target this pathway to stop the production of cancer stem cells. If cancer stem cells are gone, cancer is gone."

Related Links:
University of Southern California


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.