We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Modified CRISPR/Cas9 Identifies Genes that Protect against PD

By LabMedica International staff writers
Posted on 25 Oct 2017
A team of molecular biologists working with a yeast model of Parkinson's disease (PD) used a modified version of the CRISPR/Cas9 genome-editing tool to identify genes that protect against the toxicity of the PD protein alpha-synuclein.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. More...
CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs.

Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

For the current study, investigators at the Massachusetts Institute of Technology (Cambridge, MA, USA) modified the CRISPR/Cas9 complex by deactivating the Cas9 enzyme's cutting ability and engineering the protein so that after binding to a target site, it recruited transcription factors (proteins that activate genes).

CRISPR is normally used to edit or delete genes from living cells. However, the MIT team adapted it to randomly turn on or off distinct gene sets across large populations of cells, allowing the researchers to identify genes from the yeast Saccharomyces cerevisiae, which has been extensively used as a model to systematically study and identify genes involved in neurodegenerative diseases that protected the cells from a protein associated with Parkinson's disease.

The modified gene-editing tool was named PRISM (Perturbing Regulatory Interactions by Synthetic Modulators). It emerged as a screening platform that used randomized CRISPR/Cas transcription factors to globally perturb transcriptional networks.

The investigators reported in the October 5, 2017, issue of the journal Molecular Cell that by applying PRISM to a yeast model of Parkinson’s disease (PD), they identified guide RNAs (gRNAs) that modulated transcriptional networks and protected cells from alpha-synuclein (alphaSyn) toxicity. One gRNA identified in this screen outperformed the most protective suppressors of alphaSyn toxicity reported previously.

"What we decided to do was take a completely unbiased approach where instead of targeting individual genes of interest, we would express randomized guides inside of the cell," said senior author Dr. Timothy Lu, associate professor of electrical engineering, computer science, and biological engineering at the Massachusetts Institute of Technology. "Using that approach, can we screen for guide RNAs that have unusually strong protective activities in a model of neurodegenerative disease.

The state of the art right now is targeting two or three genes simultaneously and then looking at the effects, but we think that perhaps the gene sets that need to be modulated to address some of these diseases are actually broader than that."

Related Links:
Massachusetts Institute of Technology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Rapid Flu Test
Influenza A&B Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.