Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Study Shows Cells Maintain Active Gene Expression during Mitosis

By LabMedica International staff writers
Posted on 27 Sep 2017
A team of cell biologists has found that contrary to commonly held theory, gene expression continues during the process of cell division (mitosis).

Although the genome is generally thought to be transcriptionally silent during mitosis, technical limitations have up to now prevented sensitive mapping of transcription during mitosis and subsequent mitotic exit. More...
To study this period of the cellular life cycle, investigators at the University of Pennsylvania (Philadelphia, USA) used 5-ethynyluridine to pulse-label transcripts generated by a human liver cell line during mitosis and mitotic exit. Gene activity was followed using advanced analytical techniques such as FITC-UTP (fluorescein isothiocyanate - uridine triphosphate) labeling, RNA FISH (fluorescence in situ hybridization), and RT-qPCR (real-time polymerase chain reaction).

The investigators reported in the September 14, 2017, online edition of the journal Science that many genes exhibited transcription during mitosis, as confirmed by the analytical procedures. The first round of transcription immediately following mitosis primarily activated genes involved in the growth and rebuilding of daughter cells, rather than cell type-specific functions. These results implied that the cell’s transcription pattern was largely retained at a low level through mitosis, whereas the amplitude of transcription observed in interphase was re-established during mitotic exit.

"We looked at this question from the point of view of answering what controls cell identity and how can we harness that for cell reprogramming - for instance, to stop cancerous replication or engineer a cell to steer the direction of its "personality," so to speak," said senior author Dr. Kenneth S. Zaret, professor of cell and developmental biology at the University of Pennsylvania. "The set of genes a cell expresses determines if it is a skin cell, nerve cell, or a heart muscle cell, among the 200 or so different cell types found in the human body."

"The most amazing thing about this study is that in the end, we had to throw what we thought we knew about this basic aspect of gene regulation out the window," said Dr. Zaret. "The findings indicate that we need to think about how promoters, rather than enhancers, are regulated during cell division. This refocusing will tell us how a cell's identity, as defined by the genes it expresses, is retained through cell division. We hope it will improve our ability to deliberately change a cell's identity to create new cells and tissues for therapeutics and research."

Related Links:
University of Pennsylvania


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Rapid Flu Test
Influenza A&B Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.