Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




3D Printing Used to Create Degradable Microfluidic Devices

By LabMedica International staff writers
Posted on 21 Sep 2017
A team of bioengineers modified the stereolithographic three-dimensional printing technique to create a series of microfluidic devices from biocompatible and degradable materials.

The stereolithographic technique is based on a computer-guided ultraviolet laser that traces patterns across the surface of a photoactive polymer solution. More...
The light causes the polymers to coalesce, forming covalently bound, solid three-dimensional structures within the solution. The tracing process is repeated until an entire object is built from the bottom up.

Investigators at Brown University (Providence, RI, USA) modified this technique by printing on hydrogels using noncovalent (ionic) crosslinking, which enabled reversible patterning with controlled degradation. They demonstrated the feasibility of this approach using sodium alginate, photoacid generators, and various combinations of divalent cation salts, which could be used to tune the hydrogel degradation kinetics, pattern fidelity, and mechanical properties.

The investigators described in the September 5, 2017, online edition of the journal Lab on a Chip how they used this technique to prepare template perfusable microfluidic channels within a second encapsulating hydrogel for T-junction and gradient devices. Degradable alginate barriers were used to direct collective cell migration from different initial geometries, revealing differences in front speed and leader cell formation. The presence and degradation of printed alginate microstructures were further verified to have minimal toxicity on epithelial cells.

"The idea is that the attachments between polymers should come apart when the ions are removed, which we can do by adding a chelating agent that grabs all the ions," said senior author Dr. Ian Wong, assistant professor of engineering at Brown University. "This way we can pattern transient structures that dissolve away when we want them to. We can start to think about using this in artificial tissues where you might want channels running through it that mimic blood vessels. We could potentially template that vasculature using alginate and then dissolve it away like we did for the microfluidic channels."

Related Links:
Brown University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.