We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Immunotherapy Slows Tumor Growth in Prostate Cancer Model

By LabMedica International staff writers
Posted on 01 Sep 2017
Cancer researchers have developed a novel immunotherapy technique based on synthetic DNA plasmids that successfully controlled tumor growth and prolonged survival in a mouse prostate cancer model.

The protein prostate-specific membrane antigen (PSMA) is expressed at high levels on malignant prostate cells and is likely an important therapeutic target for the treatment of prostate cancer. More...
Current immunotherapy approaches to target PSMA include peptide, cell, vector, or DNA-based vaccines as well as passive administration of PSMA-specific monoclonal antibodies (mAb). Conventional mAb immunotherapy has numerous logistical and practical limitations, including high production costs and a requirement for frequent dosing due to short mAb serum half-life.

In order to overcome the problem of short mAb half-life in circulation, investigators at The Wistar Institute (Philadelphia, PA, USA) devised a novel strategy of antibody-based immunotherapy that utilized synthetic DNA plasmids to encode a therapeutic human mAb that targeted PSMA. The DNA in the plasmids enabled the host animal to produce the therapeutic mAb in a sustained manner.

The investigators reported in the August 17, 2017, online edition of the journal Cancer Immunology, Immunotherapy that electroporation-enhanced intramuscular injection of the DNA-encoded mAb (DMAb) plasmids into mice led to the production of functional and durable levels of the anti-PSMA antibody. The anti-PSMA produced in vivo controlled tumor growth and prolonged survival in the mouse model. The healing effect was likely mediated by antibody-dependent cellular cytotoxicity (ADCC) with the aid of NK (natural killer) cells.

"This is an important demonstration of the possibilities opened up for immunotherapy by DMAb technology to direct in vivo production of antibodies of major relevance to human cancer," said senior author Dr. David B. Weiner, director of the Vaccine & Immunotherapy Center at The Wistar Institute. "There is a great need for such new approaches for prostate disease as well as many other cancers. As recent data suggest, PSMA is an important cancer antigen expressed on many human prostate, bladder, renal as well as ovarian cancers, so additional study of the possible benefits of this therapy are important."

Related Links:
The Wistar Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.