Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




MicroRNA Protects Normal Brain from Trauma and Stress

By LabMedica International staff writers
Posted on 14 Jun 2017
A microRNA has been identified that helps prevent the normal brain from becoming susceptible to the type of seizures induced by trauma or stress in individuals with epilepsy.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. More...
Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Epilepsy may have genetic or pharmacological origins or may develop following injury. However, it remains unclear how the normal brain escapes susceptibility to seizures.

Investigators at the Hebrew University of Jerusalem (Israel) hypothesized that rapidly inducible microRNAs could mediate such protection. To test this theory, they combined genetic engineering of mouse lines, RNA sequencing, electric recording of brain activity, and learning tests. Specifically, they engineered dTg-211 mice to overproduce a doxycycline-suppressible form of the microRNA miR-211 in their forebrains.

Results published in the June 5, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences revealed that the genetically engineered mice reacted to doxycycline exposure - which lowered levels of miR-211 - by spontaneous electrocorticography-documented nonconvulsive seizures, accompanied by forebrain accumulation of the convulsive seizures mediating microRNA, miR-134. RNA sequencing of the doxycycline-treated dTg-211 mice showed overrepresentation of synaptic activity, Ca2+ transmembrane transport, TGFBR2 (transforming growth factor, beta receptor II) signaling, and cholinergic synapse pathways.

"Dynamic changes in the amount of miR-211 in the forebrains of these mice shifted the threshold for spontaneous and pharmacologically induced seizures, alongside changes in the cholinergic pathway genes," said senior author Dr. Hermona Soreq, professor of molecular neuroscience at the Hebrew University of Jerusalem. "It is important to discover how only some people's brains present a susceptibility to seizures, while others do not, even when subjected to these same stressors. In searching for the physiological mechanisms that allow some people's brains to avoid epilepsy, we found that increased levels of micro-RNA 211 could have a protective effect."

Related Links:
Hebrew University of Jerusalem


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.