We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Chemical Cocktail Enables Study of Totipotent Stem Cells

By LabMedica International staff writers
Posted on 19 Apr 2017
A team of developmental molecular biologists has formulated a chemical cocktail that enables the derivation of stem cells with unique functional and molecular features from mice and humans including the ability to maintain a state of totipotency that allows them to develop into extra-embryonic tissues such as placenta.

Under normal circumstances pluripotent stem cells such as those derived from embryonic tissue are unable to develop into tissues that support the developing embryo. More...
However, in the current report, which was published in the April 6, 2017, issue of the journal Cell, investigators at the Salk Institute for Biological Research described the discovery of a chemical cocktail - a simple combination of four chemicals and a growth factor - that enabled cultured mouse and human stem cells to generate both embryonic and extra-embryonic tissues.

These novel stem cells, which were capable of chimerizing both embryonic and extraembryonic tissues, were designated as extended pluripotent stem (EPS) cells. Notably, a single mouse EPS cell showed widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permitted generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibited interspecies chimeric competency in mouse conceptuses. The conceptus includes all structures that develop from the zygote, both embryonic and extraembryonic. It includes the embryo as well as the embryonic part of the placenta and its associated membranes - amnion, chorion (gestational sac), and yolk sac.

"During embryonic development, both the fertilized egg and its initial cells are considered totipotent, as they can give rise to all embryonic and extra-embryonic lineages. However, the capture of stem cells with such developmental potential in vitro has been a major challenge in stem cell biology," said contributing author Dr. Juan Carlos Izpisua Bemonte, a professor in the gene expression laboratories at the Salk Institute for Biological Studies. "This is the first study reporting the derivation of a stable stem cell type that shows totipotent-like bi-developmental potential towards both embryonic and extra-embryonic lineages. We believe that the derivation of a stable stem cell line with totipotent-like features will have a broad and resounding impact on the stem cell field."


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.